网站建设外包排名,厂家招代理商免费铺货,廊坊关键词seo排名网站,凡科建站快车官网要实现3D空间中的点坐标转换为屏幕二维点坐标#xff0c;需要进行透视变换和投影变换。以下是一些基本的思路和示例代码#xff0c;可以用于实现主视图、侧视图、俯视图、正等轴投影。
1. 主视图投影
主视图投影是指以一个点作为视点#xff0c;从一个方向观察物体#x…要实现3D空间中的点坐标转换为屏幕二维点坐标需要进行透视变换和投影变换。以下是一些基本的思路和示例代码可以用于实现主视图、侧视图、俯视图、正等轴投影。
1. 主视图投影
主视图投影是指以一个点作为视点从一个方向观察物体投影到一个平面上。通常情况下主视图的观察方向是从正面也就是Z轴负方向。投影平面一般是平行于X-Y平面。
具体实现可以通过以下步骤完成
定义观察点坐标和投影平面距离对3D坐标进行透视变换对透视变换后的坐标进行投影变换将投影后的坐标映射到屏幕上
示例代码
int x_2d (int) (x_3d / (z_3d - view_point_z) * distance_to_projection_plane);
int y_2d (int) (y_3d / (z_3d - view_point_z) * distance_to_projection_plane);2. 侧视图投影
侧视图投影是指以一个点作为视点从一个方向观察物体投影到一个平面上。通常情况下侧视图的观察方向是从侧面也就是X轴正方向。投影平面一般是平行于Y-Z平面。
具体实现可以通过以下步骤完成
定义观察点坐标和投影平面距离对3D坐标进行透视变换对透视变换后的坐标进行投影变换将投影后的坐标映射到屏幕上
示例代码
int x_2d (int) (y_3d / (x_3d - view_point_x) * distance_to_projection_plane);
int y_2d (int) (z_3d / (x_3d - view_point_x) * distance_to_projection_plane);3. 俯视图投影
俯视图投影是指以一个点作为视点从一个方向观察物体投影到一个平面上。通常情况下俯视图的观察方向是从上方也就是Y轴正方向。投影平面一般是平行于X-Z平面。
具体实现可以通过以下步骤完成
定义观察点坐标和投影平面距离对3D坐标进行透视变换对透视变换后的坐标进行投影变换将投影后的坐标映射到屏幕上以下是一个简单的示例代码用于将3D空间中的点坐标转化为屏幕二维点坐标。这里包括了主视图、侧视图、俯视图、正等轴投影的实现。
#include stdio.h
#include stdlib.h
#include math.h#define SCREEN_WIDTH 640
#define SCREEN_HEIGHT 480typedef struct {double x, y, z;
} Point3D;typedef struct {int x, y;
} Point2D;void project_ortho(Point3D point_3d, Point2D *point_2d, double distance_to_projection_plane) {point_2d-x (int) point_3d.x;point_2d-y (int) point_3d.y;
}void project_isometric(Point3D point_3d, Point2D *point_2d, double distance_to_projection_plane) {point_2d-x (int) ((point_3d.x - point_3d.z) * cos(30 * M_PI / 180));point_2d-y (int) ((point_3d.y - (point_3d.x point_3d.z) * sin(30 * M_PI / 180)) * cos(30 * M_PI / 180));
}void project_main(Point3D point_3d, Point2D *point_2d, Point3D view_point, double distance_to_projection_plane) {double z_3d point_3d.z - view_point.z;point_2d-x (int) (point_3d.x - view_point.x) * distance_to_projection_plane / z_3d SCREEN_WIDTH / 2;point_2d-y (int) (point_3d.y - view_point.y) * distance_to_projection_plane / z_3d SCREEN_HEIGHT / 2;
}void project_side(Point3D point_3d, Point2D *point_2d, Point3D view_point, double distance_to_projection_plane) {double x_3d point_3d.x - view_point.x;point_2d-x (int) (point_3d.y - view_point.y) * distance_to_projection_plane / x_3d SCREEN_WIDTH / 2;point_2d-y (int) (point_3d.z - view_point.z) * distance_to_projection_plane / x_3d SCREEN_HEIGHT / 2;
}void project_top(Point3D point_3d, Point2D *point_2d, Point3D view_point, double distance_to_projection_plane) {double y_3d point_3d.y - view_point.y;point_2d-x (int) (point_3d.x - view_point.x) * distance_to_projection_plane / y_3d SCREEN_WIDTH / 2;point_2d-y (int) (point_3d.z - view_point.z) * distance_to_projection_plane / y_3d SCREEN_HEIGHT / 2;
}int main() {// Define the 3D points of a cubePoint3D cube[8] {{-50, -50, -50},{50, -50, -50},{50, 50, -50},{-50, 50, -50},{50, -50, 50},{50, 50, 50},{-50, 50, 50},{-50, -50, 50},};// Define the view point for the main, side, and top projectionsPoint3D main_view_point {0, 0, 200};Point3D side_view_point {-200, 0, 0};Point3D top_view_point {0, 200, 0};// Define the distance from the projection plane for the orthogonal and isometric projectionsdouble distance_to_ortho_projection_plane 200;double distance_to_isometric_projection_plane 200 / cos(30 * M_PI / 180);// Project the 3D points to 2D points for each projectionPoint2D main_projection[8];Point2D side_projection[8];Point2D top_projection[8];Point2D ortho_projection[8];Point2D iso_projection[8];int i;for (i 0; i 8; i) {project_main(cube[i], main_projection[i], main_view_point, distance_to_ortho_projection_plane);project_side(cube[i], side_projection[i], side_view_point, distance_to_ortho_projection_plane);project_top(cube[i], top_projection[i], top_view_point, distance_to_ortho_projection_plane);project_ortho(cube[i], ortho_projection[i], distance_to_ortho_projection_plane);project_isometric(cube[i], iso_projection[i], distance_to_isometric_projection_plane);}// Draw the 2D projections// ...// Your code to draw the projections goes here// ...return 0;
}