当前位置: 首页 > news >正文

南阳手机网站建设某旅行社网站建设策划书

南阳手机网站建设,某旅行社网站建设策划书,有没有和小孩做的网站,宏重钢结构东莞网站建设马尔可夫链#xff08;Markov Chain#xff09;可以说是机器学习和人工智能的基石#xff0c;在强化学习、自然语言处理、金融领域、天气预测、语音识别方面都有着极其广泛的应用 The future is independent of the past given the present 未来独立于过去#xff…马尔可夫链Markov Chain可以说是机器学习和人工智能的基石在强化学习、自然语言处理、金融领域、天气预测、语音识别方面都有着极其广泛的应用 The future is independent of the past given the present   未来独立于过去只基于当下。 这句人生哲理的话也代表了马尔科夫链的思想过去所有的信息都已经被保存到了现在的状态基于现在就可以预测未来。 虽然这么说可能有些极端但是却可以大大简化模型的复杂度因此马尔可夫链在很多时间序列模型中得到广泛的应用比如循环神经网络 RNN隐式马尔可夫模型 HMM 等当然 MCMC 也需要它。 随机过程 马尔可夫链是随机过程 这门课程中的一部分先来简单了解一下。 简单来说随机过程就是使用统计模型一些事物的过程进行预测和处理 比如股价预测通过今天股票的涨跌却预测明天后天股票的涨跌天气预报通过今天是否下雨预测明天后天是否下雨。这些过程都是可以通过数学公式进行量化计算的。通过下雨、股票涨跌的概率用公式就可以推导出来 N 天后的状况。 简介 俄国数学家 Andrey Andreyevich Markov 研究并提出一个用数学方法就能解释自然变化的一般规律模型被命名为马尔科夫链Markov Chain。马尔科夫链为状态空间中经过从一个状态到另一个状态的转换的随机过程该过程要求具备“无记忆性 ”即下一状态的概率分布只能由当前状态决定在时间序列中它前面的事件均与之无关。这种特定类型的“无记忆性 ”称作马尔可夫性质。 马尔科夫链认为过去所有的信息都被保存在了现在的状态下了 。比如这样一串数列 1 - 2 - 3 - 4 - 5 - 6在马尔科夫链看来6 的状态只与 5 有关与前面的其它过程无关。 数学定义 假设我们的序列状态是,那么在时刻的状态的条件概率仅依赖于前一刻的状态即 既然某一时刻状态转移的概率只依赖于它的前一个状态 那么我们只要能求出系统中任意两个状态之间的转换概率这个马尔科夫链的模型就定了。 转移概率矩阵 通过马尔科夫链的模型转换我们可以将事件的状态转换成概率矩阵 又称状态分布矩阵 如下例 上图中有 A 和 B 两个状态A 到 A 的概率是 0.3A 到 B 的概率是 0.7B 到 B 的概率是 0.1B 到 A 的概率是 0.9。 初始状态在 A如果我们求 2 次运动后状态还在 A 的概率是多少非常简单  PA→A→AA→B→A0.3∗0.30.7∗0.90.72 如果求 2 次运动后的状态概率分别是多少初始状态和终止状态未知时怎么办呢这是就要引入转移概率矩阵 可以非常直观的描述所有的概率。 有了状态矩阵我们可以轻松得出以下结论 初始状态 A2 次运动后状态为 A 的概率是 0.72初始状态 A2 次运动后状态为 B 的概率是 0.28初始状态 B2 次运动后状态为 A 的概率是 0.36初始状态 B2 次运动后状态为 B 的概率是 0.64 来看一个多个状态更复杂的情况 状态转移矩阵的稳定性 状态转移矩阵有一个非常重要的特性经过一定有限次数序列的转换最终一定可以得到一个稳定的概率分布 且与初始状态概率分布无关。例如 假设我们当前股市的概率分布为 [ 0.3 0.4 , 0.3 ] [0.3 0.4, 0.3][0.30.4,0.3] 即 30% 概率的牛市40% 概率的熊盘与 30% 的横盘。然后这个状态作为序列概率分布的初始状态,将其代入这个状态转移矩阵计算的状态。代码如下 matrix np.matrix([[0.9, 0.075, 0.025],[0.15, 0.8, 0.05],[0.25, 0.25, 0.5]], dtypefloat) vector1 np.matrix([[0.3, 0.4, 0.3]], dtypefloat)for i in range(100):vector1 vector1 * matrixprint(Courrent round: {}.format(i1))print(vector1)输出结果 Current round: 1 [[ 0.405 0.4175 0.1775]] Current round: 2 [[ 0.4715 0.40875 0.11975]] Current round: 3 [[ 0.5156 0.3923 0.0921]] Current round: 4 [[ 0.54591 0.375535 0.078555]] 。。。。。。 Current round: 58 [[ 0.62499999 0.31250001 0.0625 ]] Current round: 59 [[ 0.62499999 0.3125 0.0625 ]] Current round: 60 [[ 0.625 0.3125 0.0625]] 。。。。。。 Current round: 99 [[ 0.625 0.3125 0.0625]] Current round: 100 [[ 0.625 0.3125 0.0625]]可以发现从第 60 轮开始我们的状态概率分布就不变了一直保持[ 0.625 , 0.3125 , 0.0625 ]即 62.5% 的牛市31.25% 的熊市与 6.25% 的横盘。 这个性质不仅对状态转移矩阵有效对于绝大多数的其他的马尔可夫链模型的状态转移矩阵也有效。同时不光是离散状态连续状态时也成立。   马尔科夫链的应用 语言模型 自然语言处理、语音处理中经常用到语言模型 是建立在词表上的 n nn 阶马尔可夫链。比如 在英语语音识别中语音模型产生出两个候选: “How to recognize speech” 与 How to wreck a nice beach”语言模型要判断哪个可能性更大   将一个语句看作是一个单词的序列  目标是计算其概率。同一个语句很少在语料中重复多次出现所以直接从语料中估计每个语句的概率是困难的。语言模型用局部的单词序列的概率组合计算出全局的单词序列的概率可以很好地解决这个问题。假设每个单词只依赖于其前面出现的单词也就是说单词序列具有马尔可夫性那么可以定义一阶马尔可夫链 (可以轻易扩展到 n 阶马尔可夫链)即语言模型如下计算语句的概率: 如果有充分的语料转移概率可以直接从语料中估计。直观上 “wreck a nice” 出现之后下面出现 “beach” 的概率极低所以第二个语句的概率应该更小从语言模型的角度看第一个语句的可能性更大 信号传输 考虑通过电话线或无线电波传输信号的问题。每条数据都必须经过一个多阶段的过程才能传输并且在每个阶段都存在传输错误导致数据损坏的概率。 假设传输中发生错误的概率不受过去传输错误的影响不依赖于时间并且可能的数据条数是有限的。然后可以通过马尔可夫链建模传输过程状态为0和1以及转移矩阵
http://www.w-s-a.com/news/593571/

相关文章:

  • 桂林网站制作培训学校外包seo公司
  • 莱州网站建设方案北京装修公司口碑
  • 大型网站建设济南兴田德润团队怎么样韩国女足出线了吗
  • 南通做网站找谁重庆网络推广网站推广
  • ps网站主页按钮怎么做怎样做网站的用户分析
  • 哪个网站做黑色星期五订酒店活动公司网络营销推广软件
  • 岳阳新网网站建设有限公司网页设计基础考试题目
  • 辽宁响应式网站费用海外平台有哪些
  • 杨凌规划建设局网站网站后台建设怎么进入
  • 有赞商城网站建设企业管理咨询是做什么的
  • 提供衡水网站建设中国石化工程建设有限公司邮政编码
  • 大芬地铁站附近做网站工业设计公司报价
  • 建设网站最强永年网站建设
  • 网站分站代理加盟wordpress国内工作室主题
  • 东营远见网站建设公司服装网站建设内容
  • 互助平台网站建设费用百度seo优化怎么做
  • lol英雄介绍网站模板工商局网上注册
  • 电商网站运营策划什么样的网站容易做seo
  • 网站备案需要什么流程怎么创建小程序卖东西
  • 陇西网站建设 室内设计持啊传媒企业推广
  • 连云港做网站制作首选公司如何让单位网站做防护
  • wordpress企业网站源码开发网站用什么工具做设计
  • 网站负责人不是法人seo神马网站推广器
  • 网站建设绩效考核方案wordpress支付宝付款
  • 高要区住房和城乡建设局网站如何网上注销自己的公司
  • 哪种技术做网站容易论文答辩图片做记录片的是哪个网站
  • 怎样在微信中做网站网站的备案号在哪
  • 返利淘网站怎么做wordpress htnl短代码
  • 网站 手机 appwordpress管理账户
  • 徐州网站建设 网站制作做招商网站的前景怎么样