当前位置: 首页 > news >正文

抖音代运营合作协议书范本百度seo价格查询

抖音代运营合作协议书范本,百度seo价格查询,旅行用品东莞网站建设,wordpress阅读插件#x1f368; 本文为#x1f517;365天深度学习训练营 中的学习记录博客#x1f356; 原作者#xff1a;K同学啊 前言 LSTM模型一直是一个很经典的模型#xff0c;一般用于序列数据预测#xff0c;这个可以很好的挖掘数据上下文信息#xff0c;本文将使用LSTM进行糖尿病… 本文为365天深度学习训练营 中的学习记录博客 原作者K同学啊 前言 LSTM模型一直是一个很经典的模型一般用于序列数据预测这个可以很好的挖掘数据上下文信息本文将使用LSTM进行糖尿病预测(二分类问题)采用LSTMLinear解决分类问题 糖尿病预测之前我用随机森林做过机器学习/数据分析案例—糖尿病预测; 后面打算用机器学习(随机森林、SVM等)结合深度学习LSTM做一个比较完整的项目大家可以关注一下哈; LSTM讲解 深度学习基础–LSTM学习笔记(李沐《动手学习深度学习》) 欢迎收藏 关注本人将会持续更新 文章目录 1、数据导入和数据预处理1、数据导入2、数据统计3、数据分布分析4、相关性分析 2、数据标准化和划分3、创建模型4、模型训练1、创建训练集2、创建测试集函数3、设置超参数 5、模型训练6、模型结果展示7、预测 1、数据导入和数据预处理 1、数据导入 import torch import torch.nn as nn from torch.utils.data import DataLoader, TensorDataset import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split #设置字体 from pylab import mpl mpl.rcParams[font.sans-serif] [SimHei] # 显示中文 plt.rcParams[axes.unicode_minus] False # 显示负号# 数据不大用CPU即可 device cpudata_df pd.read_excel(./dia.xls)data_df.head()卡号性别年龄高密度脂蛋白胆固醇低密度脂蛋白胆固醇极低密度脂蛋白胆固醇甘油三酯总胆固醇脉搏舒张压高血压史尿素氮尿酸肌酐体重检查结果是否糖尿病0180544210381.252.991.070.645.31838304.99243.350101180544220311.151.990.840.503.98856304.72391.047102180544230271.292.210.690.604.19736105.87325.751103180544240330.932.010.660.843.60836002.40203.240204180544250361.172.830.830.734.83856704.09236.84300 2、数据统计 data_df.info()class pandas.core.frame.DataFrame RangeIndex: 1006 entries, 0 to 1005 Data columns (total 16 columns):# Column Non-Null Count Dtype --- ------ -------------- ----- 0 卡号 1006 non-null int64 1 性别 1006 non-null int64 2 年龄 1006 non-null int64 3 高密度脂蛋白胆固醇 1006 non-null float644 低密度脂蛋白胆固醇 1006 non-null float645 极低密度脂蛋白胆固醇 1006 non-null float646 甘油三酯 1006 non-null float647 总胆固醇 1006 non-null float648 脉搏 1006 non-null int64 9 舒张压 1006 non-null int64 10 高血压史 1006 non-null int64 11 尿素氮 1006 non-null float6412 尿酸 1006 non-null float6413 肌酐 1006 non-null int64 14 体重检查结果 1006 non-null int64 15 是否糖尿病 1006 non-null int64 dtypes: float64(7), int64(9) memory usage: 125.9 KBdata_df.describe()卡号性别年龄高密度脂蛋白胆固醇低密度脂蛋白胆固醇极低密度脂蛋白胆固醇甘油三酯总胆固醇脉搏舒张压高血压史尿素氮尿酸肌酐体重检查结果是否糖尿病count1.006000e031006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.000000mean1.838279e070.59841050.2882701.1522012.7074750.9983111.8967204.85762480.81908576.8866800.1739565.562684339.34542764.1063621.6093440.444334std6.745088e050.49046416.9214870.3134260.8480700.7158912.4214031.02997312.54227012.7631730.3792601.64634284.56984629.3384370.7723270.497139min1.805442e070.00000020.0000000.4200000.8400000.1400000.3500002.41000041.00000045.0000000.0000002.210000140.80000030.0000000.0000000.00000025%1.807007e070.00000037.2500000.9200002.1000000.6800000.8800004.20000072.00000067.0000000.0000004.450000280.85000051.2500001.0000000.00000050%1.807036e071.00000050.0000001.1200002.6800000.8500001.3350004.78500079.00000076.0000000.0000005.340000333.00000062.0000002.0000000.00000075%1.809726e071.00000060.0000001.3200003.2200001.0900002.0875005.38000088.00000085.0000000.0000006.367500394.00000072.0000002.0000001.000000max2.026124e071.00000093.0000002.5000007.98000011.26000045.84000012.610000135.000000119.0000001.00000018.640000679.000000799.0000003.0000001.000000 3、数据分布分析 # 缺失值统计 data_df.isnull().sum()卡号 0 性别 0 年龄 0 高密度脂蛋白胆固醇 0 低密度脂蛋白胆固醇 0 极低密度脂蛋白胆固醇 0 甘油三酯 0 总胆固醇 0 脉搏 0 舒张压 0 高血压史 0 尿素氮 0 尿酸 0 肌酐 0 体重检查结果 0 是否糖尿病 0 dtype: int64# 数据分布、异常值分析 feature_name {性别: 性别,年龄: 年龄,高密度脂蛋白胆固醇: 高密度脂蛋白胆固醇,低密度脂蛋白胆固醇: 低密度脂蛋白胆固醇,极低密度脂蛋白胆固醇: 极低密度脂蛋白胆固醇,甘油三酯: 甘油三酯,总胆固醇: 总胆固醇,脉搏: 脉搏,舒张压: 舒张压,高血压史: 高血压史,尿素氮: 尿素氮,肌酐: 肌酐,体重检查结果: 体重检查结果,是否糖尿病: 是否糖尿病 }# 子箱图 展示 plt.figure(figsize(20, 20))for i, (col, col_name) in enumerate(feature_name.items(), 1):plt.subplot(4, 4, i)# 绘制子箱图sns.boxplot(xdata_df[是否糖尿病],ydata_df[col])# 设置标题plt.title(f{col_name}的纸箱图, fontsize10)plt.ylabel(数值, fontsize12)plt.grid(axisy, linestyle--, alpha0.7)plt.show()​ ​ 异常值分析(查阅资料后发现) 总数据较少特征参数受很多因素的影响故这里假设没有异常值(数据多的时候可以进一步分析) 患糖尿病和不患糖尿病数据分布分析 发现患病和不患病在年龄、高密度蛋白固醇、低密度蛋白固醇、低密度蛋白固醇、甘油三肪、舒张压、高血压、尿素的相关因素等数据因素有关 4、相关性分析 plt.figure(figsize(15, 10)) sns.heatmap(data_df.corr(), annotTrue, fmt.2f) plt.show()​ ​ 高密度蛋白胆固醇存在负相关故删除该特征 2、数据标准化和划分 时间步长为1 # 特征选择 x data_df.drop([卡号, 高密度脂蛋白胆固醇, 是否糖尿病], axis1) y data_df[是否糖尿病]# 数据标准化(数据之间差别大), 二分类问题y不需要做标准化 sc StandardScaler() x sc.fit_transform(x)# 转换为tensors数据 x torch.tensor(np.array(x), dtypetorch.float32) y torch.tensor(np.array(y), dtypetorch.int64)# 数据划分, 训练测试 8: 2 x_train, x_test, y_train, y_test train_test_split(x, y, test_size0.2 ,random_state42)# 维度设置, [batch_size, seq, features], 当然不设置也没事因为这样默认** 设置 seq 为 1** x_train x_train.unsqueeze(1) x_test x_test.unsqueeze(1)# 查看维度 x_train.shape, y_train.shape(torch.Size([804, 1, 13]), torch.Size([804]))# 构建数据集 batch_size 16train_dl DataLoader(TensorDataset(x_train, y_train),batch_sizebatch_size,shuffleTrue)test_dl DataLoader(TensorDataset(x_test, y_test),batch_sizebatch_size,shuffleFalse)for X, Y in train_dl:print(X.shape)print(Y.shape)break torch.Size([16, 1, 13]) torch.Size([16])3、创建模型 class Model_lstm(nn.Module):def __init__(self):super().__init__()模型结构:1、两层lstm2、一层linear self.lstm1 nn.LSTM(input_size13, hidden_size200,num_layers1, batch_firstTrue)self.lstm2 nn.LSTM(input_size200, hidden_size200,num_layers1, batch_firstTrue)# 展开分类self.lc1 nn.Linear(200, 2)def forward(self, x):out, hidden1 self.lstm1(x)out, _ self.lstm2(out, hidden1) # 将上一个层的最后隐藏层状态作为lstm2的这一层的隐藏层状态out self.lc1(out)return outmodel Model_lstm().to(device)modelModel_lstm((lstm1): LSTM(13, 200, batch_firstTrue)(lstm2): LSTM(200, 200, batch_firstTrue)(lc1): Linear(in_features200, out_features2, biasTrue) )model(torch.randn(8, 1, 13)).shapetorch.Size([8, 1, 2])4、模型训练 1、创建训练集 def train(dataloader, model, loss_fn, opt):size len(dataloader.dataset)num_batch len(dataloader)train_acc, train_loss 0.0, 0.0 for X, y in dataloader:X, y X.to(device), y.to(device)pred model(X).view(-1, 2)loss loss_fn(pred, y)# 梯度设置opt.zero_grad()loss.backward()opt.step()train_loss loss.item()# 求最大概率配对train_acc (pred.argmax(1) y).type(torch.float).sum().item()train_acc / size train_loss / num_batchreturn train_acc, train_loss 2、创建测试集函数 def test(dataloader, model, loss_fn):size len(dataloader.dataset)num_batch len(dataloader)test_acc, test_loss 0.0, 0.0 with torch.no_grad():for X, y in dataloader:X, y X.to(device), y.to(device)pred model(X).view(-1, 2)loss loss_fn(pred, y)test_loss loss.item()# 求最大概率配对test_acc (pred.argmax(1) y).type(torch.float).sum().item()test_acc / size test_loss / num_batch return test_acc, test_loss3、设置超参数 learn_rate 1e-4 opt torch.optim.Adam(model.parameters(), lrlearn_rate) loss_fn nn.CrossEntropyLoss()5、模型训练 epochs 50train_acc, train_loss, test_acc, test_loss [], [], [], []for i in range(epochs):model.train()epoch_train_acc, epoch_train_loss train(train_dl, model, loss_fn, opt)model.eval()epoch_test_acc, epoch_test_loss test(test_dl, model, loss_fn)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)# 输出template (Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f})print(template.format(i 1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))print(---------------Done---------------)Epoch: 1, Train_acc:58.5%, Train_loss:0.677, Test_acc:75.7%, Test_loss:0.655 Epoch: 2, Train_acc:71.0%, Train_loss:0.643, Test_acc:77.2%, Test_loss:0.606 Epoch: 3, Train_acc:75.2%, Train_loss:0.590, Test_acc:79.7%, Test_loss:0.533 Epoch: 4, Train_acc:76.9%, Train_loss:0.524, Test_acc:80.2%, Test_loss:0.469 Epoch: 5, Train_acc:77.5%, Train_loss:0.481, Test_acc:79.7%, Test_loss:0.436 Epoch: 6, Train_acc:78.4%, Train_loss:0.470, Test_acc:79.7%, Test_loss:0.419 Epoch: 7, Train_acc:78.6%, Train_loss:0.452, Test_acc:80.7%, Test_loss:0.412 Epoch: 8, Train_acc:78.5%, Train_loss:0.449, Test_acc:80.7%, Test_loss:0.406 Epoch: 9, Train_acc:78.7%, Train_loss:0.444, Test_acc:80.7%, Test_loss:0.400 Epoch:10, Train_acc:79.0%, Train_loss:0.435, Test_acc:81.2%, Test_loss:0.395 Epoch:11, Train_acc:78.4%, Train_loss:0.428, Test_acc:81.2%, Test_loss:0.391 Epoch:12, Train_acc:79.1%, Train_loss:0.428, Test_acc:81.2%, Test_loss:0.388 Epoch:13, Train_acc:79.0%, Train_loss:0.421, Test_acc:80.7%, Test_loss:0.385 Epoch:14, Train_acc:79.2%, Train_loss:0.415, Test_acc:81.7%, Test_loss:0.382 Epoch:15, Train_acc:79.1%, Train_loss:0.415, Test_acc:81.7%, Test_loss:0.379 Epoch:16, Train_acc:79.7%, Train_loss:0.422, Test_acc:81.7%, Test_loss:0.377 Epoch:17, Train_acc:79.5%, Train_loss:0.410, Test_acc:81.7%, Test_loss:0.375 Epoch:18, Train_acc:79.2%, Train_loss:0.406, Test_acc:81.7%, Test_loss:0.374 Epoch:19, Train_acc:80.3%, Train_loss:0.407, Test_acc:82.2%, Test_loss:0.372 Epoch:20, Train_acc:80.1%, Train_loss:0.409, Test_acc:81.2%, Test_loss:0.370 Epoch:21, Train_acc:80.2%, Train_loss:0.397, Test_acc:80.7%, Test_loss:0.368 Epoch:22, Train_acc:81.0%, Train_loss:0.399, Test_acc:81.7%, Test_loss:0.367 Epoch:23, Train_acc:80.7%, Train_loss:0.396, Test_acc:81.2%, Test_loss:0.365 Epoch:24, Train_acc:81.0%, Train_loss:0.401, Test_acc:81.7%, Test_loss:0.363 Epoch:25, Train_acc:81.1%, Train_loss:0.392, Test_acc:82.2%, Test_loss:0.363 Epoch:26, Train_acc:81.2%, Train_loss:0.385, Test_acc:82.2%, Test_loss:0.362 Epoch:27, Train_acc:80.6%, Train_loss:0.392, Test_acc:82.2%, Test_loss:0.361 Epoch:28, Train_acc:80.5%, Train_loss:0.382, Test_acc:81.2%, Test_loss:0.358 Epoch:29, Train_acc:81.1%, Train_loss:0.386, Test_acc:81.7%, Test_loss:0.358 Epoch:30, Train_acc:80.7%, Train_loss:0.380, Test_acc:82.2%, Test_loss:0.358 Epoch:31, Train_acc:81.5%, Train_loss:0.378, Test_acc:81.7%, Test_loss:0.357 Epoch:32, Train_acc:80.6%, Train_loss:0.373, Test_acc:81.2%, Test_loss:0.356 Epoch:33, Train_acc:81.3%, Train_loss:0.373, Test_acc:81.7%, Test_loss:0.357 Epoch:34, Train_acc:80.8%, Train_loss:0.378, Test_acc:81.7%, Test_loss:0.354 Epoch:35, Train_acc:81.5%, Train_loss:0.372, Test_acc:81.2%, Test_loss:0.355 Epoch:36, Train_acc:81.5%, Train_loss:0.368, Test_acc:81.2%, Test_loss:0.354 Epoch:37, Train_acc:81.2%, Train_loss:0.368, Test_acc:80.7%, Test_loss:0.354 Epoch:38, Train_acc:81.2%, Train_loss:0.369, Test_acc:81.2%, Test_loss:0.353 Epoch:39, Train_acc:81.7%, Train_loss:0.365, Test_acc:81.2%, Test_loss:0.354 Epoch:40, Train_acc:81.5%, Train_loss:0.363, Test_acc:81.2%, Test_loss:0.355 Epoch:41, Train_acc:81.7%, Train_loss:0.358, Test_acc:81.2%, Test_loss:0.354 Epoch:42, Train_acc:81.7%, Train_loss:0.355, Test_acc:81.2%, Test_loss:0.353 Epoch:43, Train_acc:81.3%, Train_loss:0.353, Test_acc:80.7%, Test_loss:0.354 Epoch:44, Train_acc:82.0%, Train_loss:0.355, Test_acc:80.7%, Test_loss:0.354 Epoch:45, Train_acc:81.7%, Train_loss:0.353, Test_acc:79.7%, Test_loss:0.354 Epoch:46, Train_acc:82.1%, Train_loss:0.354, Test_acc:80.2%, Test_loss:0.354 Epoch:47, Train_acc:82.0%, Train_loss:0.349, Test_acc:80.2%, Test_loss:0.356 Epoch:48, Train_acc:82.1%, Train_loss:0.350, Test_acc:80.2%, Test_loss:0.356 Epoch:49, Train_acc:82.0%, Train_loss:0.345, Test_acc:80.7%, Test_loss:0.355 Epoch:50, Train_acc:81.8%, Train_loss:0.344, Test_acc:80.7%, Test_loss:0.355 ---------------Done---------------6、模型结果展示 from datetime import datetime current_time datetime.now()epochs_range range(epochs)plt.figure(figsize(12, 3)) plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, labelTraining Accuracy) plt.plot(epochs_range, test_acc, labelTest Accuracy) plt.legend(loclower right) plt.title(Training Accuracy) plt.xlabel(current_time) plt.subplot(1, 2, 2) plt.plot(epochs_range, train_loss, labelTraining Loss) plt.plot(epochs_range, test_loss, labelTest Loss) plt.legend(locupper right) plt.title(Training Loss) plt.show()​ 7、预测 test_x x_test[0].reshape(1, 1, 13)pred model(test_x.to(device)).reshape(-1, 2) res pred.argmax(1).item()print(f预测结果: {res}, (1: 患病; 0: 不患病))预测结果: 1, (1: 患病; 0: 不患病)
http://www.w-s-a.com/news/575370/

相关文章:

  • 贵州省清镇市建设学校网站国家企业信用信息公示系统官网河北
  • 游戏界面设计网站网站建设问一问公司
  • 织梦网站模板如何安装教程视频国外哪些网站可以注册域名
  • 用群晖做网站网站中文名称注册
  • 做一个企业网站需要哪些技术app开发公司名字
  • 网站建设有技术的公司图片在线设计平台
  • 建公司网站的详细步骤关于进一步加强网站建设
  • 丰宁县有做网站的吗?维护一个网站一年多少钱
  • 杭州网站设计渠道wordpress购物主题
  • 山东政务网站建设文字logo免费设计在线生成
  • 韩雪个人网站唐山网络运营推广
  • 查建设工程业绩在哪个网站网站建设优化服务如何
  • 江苏省建设工程安全监督网站商洛网站制作
  • 海淀网站建设wzjs51网页设计页面配色分析
  • 网站的备案流程图垦利网站制作
  • 行业用品网站怎么建设外链买东西的网站都有哪些
  • 淘宝做促销的网站集团门户网站建设策划
  • 网站排行榜查询怎样把个人介绍放到百度
  • vps 网站上传河北省招投标信息网
  • 武进网站建设咨询网站定制公司选哪家
  • 郑州市建设投资集团公司网站深圳企业网站建设推荐公司
  • 天津个人网站备案查询dz网站恢复数据库
  • 关于网站建设的期刊文献宣传片文案
  • 物业网站模板下载wordpress+菜单大小
  • 网站建设案例教程视频空间刷赞网站推广
  • 网站建设借鉴做外贸球衣用什么网站
  • 网站建设的前途微信公众号制作网站
  • 做网站之前要安装什么网站改进建议有哪些
  • 网站建设+管理系统开发山东专业网站建设公司
  • 基础微网站开发咨询中国印花图案设计网站