当前位置: 首页 > news >正文

网站怎么优化陕西网站备案查询

网站怎么优化,陕西网站备案查询,百度代理查询,做健康类网站怎么备案本文仅供学习使用 本文参考#xff1a; B站#xff1a;CLEAR_LAB 笔者带更新-运动学 课程主讲教师#xff1a; Prof. Wei Zhang 课程链接 #xff1a; https://www.wzhanglab.site/teaching/mee-5114-advanced-control-for-robotics/ 南科大高等机器人控制课 Ch12 Robotic … 本文仅供学习使用 本文参考 B站CLEAR_LAB 笔者带更新-运动学 课程主讲教师 Prof. Wei Zhang 课程链接 https://www.wzhanglab.site/teaching/mee-5114-advanced-control-for-robotics/ 南科大高等机器人控制课 Ch12 Robotic Motion Control 1. Basic Linear Control Design1.1 Error Response1.2 Standard Second-Order Systems1.3 Second-Order Response Characteristics1.4 State-Space Controller Design 2. Motion Control Problems2.1 Robotic Motion Control Problem2.2 Variations in Robot Motion Control 3. Motion Control with Velocity/Acceleration as Input3.1 Velocity-Resolved Control3.2.1 Velocity-Resolved Joint Space Control3.2.2 Velocity-Resolved Task Space Control 3.2 Acceleration-Resolved Control3.2.1 Acceleration-Resolved Control in Joint Space3.2.2 Acceleration-Resolved Control in Task Space 4. Motion Control with Torque as Input and Task Space Inverse Dynamics4.1 Recall Properties of Robot Dynamics4.2 Computed Torque Control4.3 Inverse Dynamics Control 机器人——运动能力、计算能力、感知决策能力 的机电系统 1. Basic Linear Control Design 1.1 Error Response Steady-state error : e s s lim ⁡ t → ∞ θ e ( t ) e_{\mathrm{ss}}\underset{t\rightarrow \infty}{\lim}\theta _{\mathrm{e}}\left( t \right) ess​t→∞lim​θe​(t) Precent overshoot : P.O. Rise time / Peak time : Settling time : T s T_{\mathrm{s}} Ts​ 1.2 Standard Second-Order Systems 详细推导见 待补充 1.3 Second-Order Response Characteristics 详细推导见 待补充 1.4 State-Space Controller Design Eigenvalue assignment : Find control gain K K K such that e i g ( A − B K ) e i g d e s i r e d eig\left( A-BK \right) eig_{\mathrm{desired}} eig(A−BK)eigdesired​Solvability : We can always find such K K K if ( A , B ) \left( A,B \right) (A,B) is controllable ( r a n k ( m c ) n rank\left( m_{\mathrm{c}} \right) n rank(mc​)n)How to choose desired eigs? —— refer to 2nd-order system specification (P.O. T s T_{\mathrm{s}} Ts​ T p T_{\mathrm{p}} Tp​) ⇒ a r t \overset{art}{\Rightarrow} ⇒art dominant poles other poles ⇒ \Rightarrow ⇒ e i g d e s i r e d eig_{\mathrm{desired}} eigdesired​ ⇒ s c i e n c e \overset{science}{\Rightarrow} ⇒science K K K 2. Motion Control Problems 2.1 Robotic Motion Control Problem Dynamic equation of fully-acuated robot (with external force) : { τ M ( q ) q ¨ c ( q , q ˙ ) q ˙ g ( q ) J T ( q ) F e x t y h ( q ) \begin{cases} \tau M\left( q \right) \ddot{q}c\left( q,\dot{q} \right) \dot{q}g\left( q \right) J^{\mathrm{T}}\left( q \right) \mathcal{F} _{\mathrm{ext}}\\ yh\left( q \right)\\ \end{cases} {τM(q)q¨​c(q,q˙​)q˙​g(q)JT(q)Fext​yh(q)​ q ∈ R n q\in \mathbb{R} ^n q∈Rn : joint positions (generalized coordinate) τ ∈ R n \tau \in \mathbb{R} ^n τ∈Rn : joint torque (generalized input) y y y : output (variable to be controlled) —— can be any func of q q q , e.g. y q , y [ T ( q ) ] ∈ S E ( 3 ) yq,y\left[ T\left( q \right) \right] \in SE\left( 3 \right) yq,y[T(q)]∈SE(3) Motion Control Problems : Let y y y track given reference y d y_{\mathrm{d}} yd​ often times q d q_{\mathrm{d}} qd​ is given by planner represented by polynomials , so that q ˙ d , q ¨ d \dot{q}_{\mathrm{d}},\ddot{q}_{\mathrm{d}} q˙​d​,q¨​d​ can be easily obtained 2.2 Variations in Robot Motion Control Joint-space vs. Task-space control Joint-space : y ( t ) q ( t ) y\left( t \right) q\left( t \right) y(t)q(t) , i.e. , want q ( t ) q\left( t \right) q(t) to track a given q d ( t ) q_{\mathrm{d}}\left( t \right) qd​(t) joint reference Task-space : y ( t ) [ T ( q ( t ) ) ] ∈ S E ( 3 ) y\left( t \right) \left[ T\left( q\left( t \right) \right) \right] \in SE\left( 3 \right) y(t)[T(q(t))]∈SE(3) denotes end-effector pose/configuration, we want y ( t ) y\left( t \right) y(t) to track y d ( t ) y_{\mathrm{d}}\left( t \right) yd​(t) Actuation models: Velocity source : u q ˙ u\dot{q} uq˙​ —— directly control velocity Acceleration sources : u q ¨ u\ddot{q} uq¨​ —— directly control acceleration Torque sources : u τ u\tau uτ —— directly control torque Acutation model make sense if for ant given u u u , the joint velocity q ˙ \dot{q} q˙​ can immediatly reach u u u Motion Control Problem Design u u u to set y y y track desired reference y d y_{\mathrm{d}} yd​ Depending on our assumption on u / y u/y u/y output y y y —— 6大基本问题 y ↔ q ∈ R n y\leftrightarrow q\in \mathbb{R} ^n y↔q∈Rn - joint variable : Joint space motion control (Velocity-resolved Joint-space control ; Acceleration-resolved Joint-space control ; Torque-resolved Joint-space control ; ) y ↔ [ T ( q ) ] ∈ S E ( 3 ) y\leftrightarrow \left[ T\left( q \right) \right] \in SE\left( 3 \right) y↔[T(q)]∈SE(3) or y f ( q ) yf\left( q \right) yf(q) - task space variable - e.g. origin of end-effector frame : Task space motion control (Velocity-resolved Task-space ; Acceleration-resolved Task-space ; Torque-resolved Task-space ; ) Linear control / feedback lineariazation 3. Motion Control with Velocity/Acceleration as Input 3.1 Velocity-Resolved Control Each joints’ velocity q ˙ i \dot{q}_{\mathrm{i}} q˙​i​ can be directly controlled Good approximation for hydraulic actuators Common approxiamtion of the outer-loop control for the Inner / outer loop control setup 3.2.1 Velocity-Resolved Joint Space Control Joint-space ‘dynamics’ : single integrator q ˙ u \dot{q}u q˙​u Joint-space tracking becomes standard linear tracking control problem : u q ˙ d K 0 q ¨ ⇒ q ~ ˙ K 0 q ¨ 0 u\dot{q}_{\mathrm{d}}K_0\ddot{q}\Rightarrow \dot{\tilde{q}}K_0\ddot{q}0 uq˙​d​K0​q¨​⇒q~​˙​K0​q¨​0 , where q ~ q d − q \tilde{q}q_{\mathrm{d}}-q q~​qd​−q is the joint position error. —— stable if e i g ( − K 0 ) ∈ O L H P eig\left( -K_0 \right) \in OLHP eig(−K0​)∈OLHP The error dynamic is stable if − K 0 -K_0 −K0​ is Hurwitz 3.2.2 Velocity-Resolved Task Space Control For task space control , y [ T ( q ) ] y\left[ T\left( q \right) \right] y[T(q)] needs to track y d y_{\mathrm{d}} yd​ , y y y can be ant function of q q q, in particular , it can represents position and/or the end-effector frame Taking derivatives of y y y , and letting u q ˙ u\dot{q} uq˙​ , we have : y ˙ J a ( q ) u \dot{y}J_{\mathrm{a}}\left( q \right) u y˙​Ja​(q)u Note that q q q is function of y y y through inverse kinematics ( q I K ( y ) qIK\left( y \right) qIK(y)) So the above dynamics can be written in terms of y y y and u u u only. The detailed form can be quite complex in general y ˙ J a ( I K ( y ) ) u \dot{y}J_{\mathrm{a}}\left( IK\left( y \right) \right) u y˙​Ja​(IK(y))u Let v y v_{\mathrm{y}} vy​ be virtual control y ˙ v y \dot{y}v_{\mathrm{y}} y˙​vy​ design v y v_{\mathrm{y}} vy​ to track y d y_{\mathrm{d}} yd​ (same as above)Find actual control u u u such that J a ( I K ( y ) ) u ≈ v y J_{\mathrm{a}}\left( IK\left( y \right) \right) u\approx v_{\mathrm{y}} Ja​(IK(y))u≈vy​ We can design outer-loop controller as if we can directly control y ˙ \dot{y} y˙​ y ˙ v y y ˙ d K ( y d − y ) ⟹ p l u g i n y ˙ v y y ~ ˙ − K y ~ \dot{y}v_{\mathrm{y}}\dot{y}_{\mathrm{d}}K\left( y_{\mathrm{d}}-y \right) \overset{plug\,\,in\,\,\dot{y}v_{\mathrm{y}}\,\,}{\Longrightarrow}\dot{\tilde{y}}-K\tilde{y} y˙​vy​y˙​d​K(yd​−y)⟹pluginy˙​vy​​y~​˙​−Ky~​ We can select K K K such that − K -K −K is Hurtwiz , object of inner loop : determine u q ˙ u\dot{q} uq˙​ such that y ˙ ≈ v y \dot{y}\approx v_{\mathrm{y}} y˙​≈vy​ System(2) is nonlinear system , a commeon way is to break it into inner-outer loop , where the outer loop directly control velocity of y y y, and the inner loop tries to find u u u to generate desired task space velocity Outer loop : y ˙ v y \dot{y}v_{\mathrm{y}} y˙​vy​ , where control v y y ˙ d K 0 y ~ v_{\mathrm{y}}\dot{y}_{\mathrm{d}}K_0\tilde{y} vy​y˙​d​K0​y~​ , resulting in task-space closed-loop error dynamics: y ~ ˙ K 0 y ~ 0 \dot{\tilde{y}}K_0\tilde{y}0 y~​˙​K0​y~​0 Above task space tracking relies on a fictitious control v y v_{\mathrm{y}} vy​ , i.e. , it assumes y ˙ \dot{y} y˙​ can be arbitrarily controlled by selecting appropriate u q ˙ u\dot{q} uq˙​ , which is true if J a J_{\mathrm{a}} Ja​ is full-row rank Inner loop : Given v y v_{\mathrm{y}} vy​ from the outer loop, find the joint velocity control by solving { min ⁡ u ∥ v y − J a ( q ) u ∥ 2 r e g u l a r i z a t i o n t e r m s u b j . t o : C o n s t r a i n t s o n u , e . g . { q ˙ min ⁡ ⩽ u ⩽ q ˙ max ⁡ q min ⁡ ⩽ q u Δ t ⩽ q max ⁡ \begin{cases} \min _{\mathrm{u}}\left\| v_{\mathrm{y}}-J_{\mathrm{a}}\left( q \right) u \right\| ^2regularization\,\,term\\ subj.to\,\,: Constraints\,\,on\,\,u\,\,, e.g.\begin{cases} \dot{q}_{\min}\leqslant u\leqslant \dot{q}_{\max}\\ q_{\min}\leqslant qu\varDelta t\leqslant q_{\max}\\ \end{cases}\\ \end{cases} ⎩ ⎨ ⎧​minu​∥vy​−Ja​(q)u∥2regularizationtermsubj.to:Constraintsonu,e.g.{q˙​min​⩽u⩽q˙​max​qmin​⩽quΔt⩽qmax​​​ Inner-loop is essentially a differential IK controller One can also use the pseudo-inverse control u J a † v y u{J_{\mathrm{a}}}^{\dagger}v_{\mathrm{y}} uJa​†vy​ 3.2 Acceleration-Resolved Control 3.2.1 Acceleration-Resolved Control in Joint Space Joint acceleration cna be directly controlled , resulting in double-integrator dynamics q ¨ u \ddot{q}u q¨​u . Given q d q_{\mathrm{d}} qd​ reference , we want q → q d q\rightarrow q_{\mathrm{d}} q→qd​ (double integartor) Joint-space tracking becomes standard linear tracking control problem for double-integrator system: u q ¨ d K 1 q ~ ˙ K 0 q ~ 0 , q ~ ∈ R n u\ddot{q}_{\mathrm{d}}K_1\dot{\tilde{q}}K_0\tilde{q}0,\tilde{q}\in \mathbb{R} ^n uq¨​d​K1​q~​˙​K0​q~​0,q~​∈Rn —— PD control , closed-loop system , where q ~ q d − q \tilde{q}q_{\mathrm{d}}-q q~​qd​−q is the joint position error. Stablility condition : Let x [ q ~ q ~ ˙ ] ∈ R 2 n x\left[ \begin{array}{c} \tilde{q}\\ \dot{\tilde{q}}\\ \end{array} \right] \in \mathbb{R} ^{2n} x[q~​q~​˙​​]∈R2n , [ 0 E − K 0 − K 1 ] [ q ~ q ~ ˙ ] , x ˙ A x \left[ \begin{matrix} 0 E\\ -K_0 -K_1\\ \end{matrix} \right] \left[ \begin{array}{c} \tilde{q}\\ \dot{\tilde{q}}\\ \end{array} \right] ,\dot{x}Ax [0−K0​​E−K1​​][q~​q~​˙​​],x˙Ax closed-loop system is stable . if e i g ( A ) ∈ O L H P eig\left( A \right) \in OLHP eig(A)∈OLHP or A A A is Hurwitz 3.2.2 Acceleration-Resolved Control in Task Space For task space control , y [ T ( q ) ] ∈ S E ( 3 ) y\left[ T\left( q \right) \right] \in SE\left( 3 \right) y[T(q)]∈SE(3) needs to track y d y_{\mathrm{d}} yd​ Note : For y f ( q ) yf\left( q \right) yf(q) y ˙ J a ( q ) q ˙ \dot{y}J_{\mathrm{a}}\left( q \right) \dot{q} y˙​Ja​(q)q˙​ and y ¨ J ˙ a ( q ) q ˙ J a ( q ) q ¨ ⇒ y ¨ J ˙ a ( q ) q ˙ J a ( q ) u ⇐ \ddot{y}\dot{J}_{\mathrm{a}}\left( q \right) \dot{q}J_{\mathrm{a}}\left( q \right) \ddot{q}\Rightarrow \ddot{y}\dot{J}_{\mathrm{a}}\left( q \right) \dot{q}J_{\mathrm{a}}\left( q \right) u\Leftarrow y¨​J˙a​(q)q˙​Ja​(q)q¨​⇒y¨​J˙a​(q)q˙​Ja​(q)u⇐ nonlinear dynamics Following the same inner-outer loop strategy deiscussed before . Introduce virtual control , a y a_{\mathrm{y}} ay​ such that y ¨ a y \ddot{y}a_{\mathrm{y}} y¨​ay​ , we can design controller for a y a_{\mathrm{y}} ay​ to let y → y d y\rightarrow y_{\mathrm{d}} y→yd​ Outer-loop dynamics : y ¨ a y \ddot{y}a_{\mathrm{y}} y¨​ay​ , with a y a_{\mathrm{y}} ay​ being the outer-loop control input a y y ¨ d K 1 y ~ ˙ K 0 y ~ ⇒ y ~ ¨ K 1 y ~ ˙ K 0 y ~ 0 a_{\mathrm{y}}\ddot{y}_{\mathrm{d}}K_1\dot{\tilde{y}}K_0\tilde{y}\Rightarrow \ddot{\tilde{y}}K_1\dot{\tilde{y}}K_0\tilde{y}0 ay​y¨​d​K1​y~​˙​K0​y~​⇒y~​¨​K1​y~​˙​K0​y~​0 —— PD control , stable if [ 0 E − K 0 − K 1 ] \left[ \begin{matrix} 0 E\\ -K_0 -K_1\\ \end{matrix} \right] [0−K0​​E−K1​​] Hurwitz Inner-loop : given a y a_{\mathrm{y}} ay​ from outer loop , find the “best” joint acceleration: { min ⁡ u ∥ a y − J ˙ a ( q ) q ˙ − J a ( q ) u ∥ 2 r e g u l a r i z a t i o n t e r m s u b j . t o : C o n s t r a i n t s o n u \begin{cases} \min _{\mathrm{u}}\left\| a_{\mathrm{y}}-\dot{J}_{\mathrm{a}}\left( q \right) \dot{q}-J_{\mathrm{a}}\left( q \right) u \right\| ^2regularization\,\,term\\ subj.to\,\,: Constraints\,\,on\,\,u\,\,\\ \end{cases} ⎩ ⎨ ⎧​minu​ ​ay​−J˙a​(q)q˙​−Ja​(q)u ​2regularizationtermsubj.to:Constraintsonu​ —— u u u : optimization variable , J ˙ a ( q ) , q ˙ , q \dot{J}_{\mathrm{a}}\left( q \right) ,\dot{q},q J˙a​(q),q˙​,q - known { A c c : q ¨ min ⁡ ⩽ u ⩽ q ¨ max ⁡ V e l : q ˙ min ⁡ ⩽ q u Δ t ⩽ q ˙ max ⁡ \begin{cases} Acc\,\,: \ddot{q}_{\min}\leqslant u\leqslant \ddot{q}_{\max}\\ Vel\,\,: \dot{q}_{\min}\leqslant qu\varDelta t\leqslant \dot{q}_{\max}\\ \end{cases} {Acc:q¨​min​⩽u⩽q¨​max​Vel:q˙​min​⩽quΔt⩽q˙​max​​ Mathematically , the above problem is the same as the Differential IK problem At any given time , q ˙ , q \dot{q},q q˙​,q can be measured , and then y , y ˙ y,\dot{y} y,y˙​ can be computed, which allows us to compute outer loop control a y a_{\mathrm{y}} ay​ and inner loop control u u u 4. Motion Control with Torque as Input and Task Space Inverse Dynamics 4.1 Recall Properties of Robot Dynamics For fully actuated robot : τ M ( q ) q ¨ C ( q , q ˙ ) q ˙ g ( q ) \tau M\left( q \right) \ddot{q}C\left( q,\dot{q} \right) \dot{q}g\left( q \right) τM(q)q¨​C(q,q˙​)q˙​g(q) M ( q ) ∑ J i T [ I i ] 6 × 6 J i ∈ R n × n M\left( q \right) \sum{{J_{\mathrm{i}}}^{\mathrm{T}}\left[ \mathcal{I} _{\mathrm{i}} \right] _{6\times 6}J_{\mathrm{i}}}\in \mathbb{R} ^{n\times n} M(q)∑Ji​T[Ii​]6×6​Ji​∈Rn×n There are many valid difinitions of C ( q , q ˙ ) C\left( q,\dot{q} \right) C(q,q˙​) , typical choice for C C C include: C i j ∑ k 1 2 ( ∂ M i j ∂ q k ∂ M i k ∂ q j − ∂ M j k ∂ q i ) C_{\mathrm{ij}}\sum_k^{}{\frac{1}{2}\left( \frac{\partial M_{\mathrm{ij}}}{\partial q_{\mathrm{k}}}\frac{\partial M_{\mathrm{ik}}}{\partial q_{\mathrm{j}}}-\frac{\partial M_{\mathrm{jk}}}{\partial q_{\mathrm{i}}} \right)} Cij​∑k​21​(∂qk​∂Mij​​∂qj​∂Mik​​−∂qi​∂Mjk​​) For the above defined C C C , we have M ˙ − 2 C \dot{M}-2C M˙−2C is skew symmetric For all valid C C C, we have q ˙ T [ M ˙ − 2 C ] q ˙ 0 \dot{q}^{\mathrm{T}}\left[ \dot{M}-2C \right] \dot{q}0 q˙​T[M˙−2C]q˙​0 These properties play improtant role in designing motion controller 4.2 Computed Torque Control For fully-actuated robot, we have M ( q ) ≻ 0 M\left( q \right) \succ 0 M(q)≻0 and q ¨ \ddot{q} q¨​ can be arbitrarily specified through torque control u τ u\tau uτ q ¨ M − 1 ( q ) [ u − C ( q , q ˙ ) q ˙ − g ( q ) ] \ddot{q}M^{-1}\left( q \right) \left[ u-C\left( q,\dot{q} \right) \dot{q}-g\left( q \right) \right] q¨​M−1(q)[u−C(q,q˙​)q˙​−g(q)] we know how to design controller if u q ¨ u\ddot{q} uq¨​ Thus , for fully-acuated robot, torque controlled case can be reduced to the acceleration-resolved case Outer loop: q ¨ a q \ddot{q}a_{\mathrm{q}} q¨​aq​ with joint acceleration as control input a q q ¨ K 1 y ~ ˙ K 0 y ~ ⇒ q ~ ¨ K 1 q ~ ˙ K 0 q ~ 0 a_{\mathrm{q}}\ddot{q}K_1\dot{\tilde{y}}K_0\tilde{y}\Rightarrow \ddot{\tilde{q}}K_1\dot{\tilde{q}}K_0\tilde{q}0 aq​q¨​K1​y~​˙​K0​y~​⇒q~​¨​K1​q~​˙​K0​q~​0 Inner loop : since M ( q ) M\left( q \right) M(q) is square and nonsingular , inner loop control u u u can be found analytically: u M ( q ) ( q ¨ d K 1 q ~ ˙ K 0 q ~ ) C ( q , q ˙ ) q ˙ g ( q ) uM\left( q \right) \left( \ddot{q}_{\mathrm{d}}K_1\dot{\tilde{q}}K_0\tilde{q} \right) C\left( q,\dot{q} \right) \dot{q}g\left( q \right) uM(q)(q¨​d​K1​q~​˙​K0​q~​)C(q,q˙​)q˙​g(q) The control law is a function of q , q ˙ q,\dot{q} q,q˙​ and the reference q d q_{\mathrm{d}} qd​. It is called computed-torque control. The control law also relies on system model M , C , g M,C,g M,C,g if these model information are not accurate, the control will not perform well. y f ( q ) , y ¨ J ˙ a ( q ) q ˙ J a ( q ) M − 1 ( u − C − g ) yf\left( q \right) ,\ddot{y}\dot{J}_{\mathrm{a}}\left( q \right) \dot{q}J_{\mathrm{a}}\left( q \right) M^{-1}\left( u-C-g \right) yf(q),y¨​J˙a​(q)q˙​Ja​(q)M−1(u−C−g) Idea easily extends to task space : y ˙ J a ( q ) q ˙ \dot{y}J_{\mathrm{a}}\left( q \right) \dot{q} y˙​Ja​(q)q˙​ and y ¨ J ˙ a ( q ) q ˙ J a ( q ) q ¨ \ddot{y}\dot{J}_{\mathrm{a}}\left( q \right) \dot{q}J_{\mathrm{a}}\left( q \right) \ddot{q} y¨​J˙a​(q)q˙​Ja​(q)q¨​ —— τ u τ , q ¨ M − 1 [ u − C − g ] \tau u\tau ,\ddot{q}M^{-1}\left[ u-C-g \right] τuτ,q¨​M−1[u−C−g] Outer loop : y ¨ a y \ddot{y}a_{\mathrm{y}} y¨​ay​ and a y y ¨ d K 1 y ~ ˙ K 0 y ~ a_{\mathrm{y}}\ddot{y}_{\mathrm{d}}K_1\dot{\tilde{y}}K_0\tilde{y} ay​y¨​d​K1​y~​˙​K0​y~​ Inner loop : sekect torque control u τ u\tau uτ by { min ⁡ u ∥ a y − J ˙ a ( q ) q ˙ − J a ( q ) M − 1 ( u − C q ˙ − g ) ∥ 2 s u b j . t o : C o n s t r a i n t s \begin{cases} \min _{\mathrm{u}}\left\| a_{\mathrm{y}}-\dot{J}_{\mathrm{a}}\left( q \right) \dot{q}-J_{\mathrm{a}}\left( q \right) M^{-1}\left( u-C\dot{q}-g \right) \right\| ^2\\ subj.to\,\,: Constraints\,\,\\ \end{cases} ⎩ ⎨ ⎧​minu​ ​ay​−J˙a​(q)q˙​−Ja​(q)M−1(u−Cq˙​−g) ​2subj.to:Constraints​ If J a J_{\mathrm{a}} Ja​is invertible and we don’t impose additional torque constraints, analytical control law can be easily obtained —— u ( J a ( q ) M − 1 ) − 1 ( a y − J ˙ a ( q ) q ˙ . . . ) u\left( J_{\mathrm{a}}\left( q \right) M^{-1} \right) ^{-1}\left( a_{\mathrm{y}}-\dot{J}_{\mathrm{a}}\left( q \right) \dot{q}... \right) u(Ja​(q)M−1)−1(ay​−J˙a​(q)q˙​...) 4.3 Inverse Dynamics Control The computed-torque controller above is also canned inverse dynamics control Forward dynamics : given τ \tau τ to compute q ¨ \ddot{q} q¨​ —— from torque to motion Inverse dynamics : given desired acceleration a q a_{\mathrm{q}} aq​, we inverted it to find the required control by u M a q C q ˙ g uMa_{\mathrm{q}}C\dot{q}g uMaq​Cq˙​g Task space case can be viewed as inverting the task space dynamics —— Given a y a_{\mathrm{y}} ay​ ( y y y task space) , find τ \tau τ such that y ¨ a y \ddot{y}a_{\mathrm{y}} y¨​ay​ With recent advances in optimization , it is often preferred to do ID with quedratic program For example, above equation can be viewed as task-space ID. We can incorporate torque contraints explicitly as follows: { min ⁡ u ∥ a y − J ˙ a ( q ) q ˙ − J a M − 1 ( u − C q ˙ − g ) ∥ 2 s u b j . t o : u − ⩽ u ⩽ u \begin{cases} \min _{\mathrm{u}}\left\| a_{\mathrm{y}}-\dot{J}_{\mathrm{a}}\left( q \right) \dot{q}-J_{\mathrm{a}}M^{-1}\left( u-C\dot{q}-g \right) \right\| ^2\\ subj.to\,\,: u_-\leqslant u\,\,\leqslant u_\,\,\\ \end{cases} ⎩ ⎨ ⎧​minu​ ​ay​−J˙a​(q)q˙​−Ja​M−1(u−Cq˙​−g) ​2subj.to:u−​⩽u⩽u​​ optimization variable u ∈ R n u\in \mathbb{R} ^n u∈Rn This is equivalent to the following more popular form: { min ⁡ u , q ¨ ∥ a y − J ˙ a q ˙ − J a q ¨ ∥ 2 s u b j . t o : M q ¨ C q ˙ g u u − ⩽ u ∈ R n ⩽ u \begin{cases} \underset{u,\ddot{q}}{\min}\left\| a_{\mathrm{y}}-\dot{J}_{\mathrm{a}}\dot{q}-J_{\mathrm{a}}\ddot{q} \right\| ^2\\ subj.to\,\,: \begin{array}{c} M\ddot{q}C\dot{q}gu\\ u_-\leqslant u\in \mathbb{R} ^n\,\,\leqslant u_\,\,\\ \end{array}\\ \end{cases} ⎩ ⎨ ⎧​u,q¨​min​ ​ay​−J˙a​q˙​−Ja​q¨​ ​2subj.to:Mq¨​Cq˙​guu−​⩽u∈Rn⩽u​​​ optimization variable u , q ¨ ∈ R n u,\ddot{q}\in \mathbb{R} ^n u,q¨​∈Rn
http://www.w-s-a.com/news/853193/

相关文章:

  • 那种自行提取卡密的网站怎么做网站攻击
  • 洛阳免费网站建设qq是哪家公司开发的软件
  • 怎么做网站网页wordpress网址导航
  • 专业微信网站建设公司首选公司wordpress自动分类插件
  • 网站设计登录界面怎么做网站突然排名没了
  • wordpress 人物页面seo优化公司信
  • 高端网站建设报价网站建设需要硬件设备
  • 做国际物流在哪些网站找客户营销qq怎么申请
  • 网站做推广百度好还是360好科技厅
  • 网站开发工具排名万户网络建一个网站虽要多少钱
  • 用凡科做的网站要钱吗WordPress城市切换
  • 制作一个门户网站需要多少钱营销型网站特征
  • 手机网站 多html中国建设银行网站包头分行
  • 哪个网站做免费广告好招牌图片效果图设计制作
  • 网站建设优化服务机构苏州市做网站
  • 网站如何优化流程企业网站管理系统视频教程
  • 我想克隆个网站 怎么做贵州住房和城乡建设厅官网
  • 网站建设项目前景上海今天新闻综合频道
  • 做网站推销的如何谈客户wordpress怎么做商城
  • 摄影素材库网站服装页面设计的网站
  • 如何用国外网站做头条做个游戏app的费用大概多少
  • 网站 形象入口页福州网站建设网络公司排名
  • 免费下载教学设计的网站送网站建设管理信息内容审核制度
  • 外贸专业网站的公司百度旗下13个app
  • 物理组简介 网站建设高师院校语言类课程体系改革与建设 教学成果奖申报网站
  • 爱网站无法登录怎么回事手表网
  • 网站建设公司现在还挣钱吗山西手动网站建设推荐平台
  • 重庆建设工程交易信息网站网站制作公司起名
  • 东莞寮步做网站的有吗企业宣传册制作
  • 做网站的软件是哪个上蔡做网站