让搜索引擎收录网站,南浔城乡建设局网站,wordpress新版编辑,云开发环境垃圾回收器
GC 分类与性能指标
垃圾回收器概述 垃圾收集器没有在规范中进行过多的规定#xff0c;可以由不同的厂商、不同版本的JVM来实现。 由于JDK的版本处于高速迭代过程中#xff0c;因此Java发展至今已经衍生了众多的GC版本。 从不同角度分析垃圾收集器#xff0c;…垃圾回收器
GC 分类与性能指标
垃圾回收器概述 垃圾收集器没有在规范中进行过多的规定可以由不同的厂商、不同版本的JVM来实现。 由于JDK的版本处于高速迭代过程中因此Java发展至今已经衍生了众多的GC版本。 从不同角度分析垃圾收集器可以将GC分为不同的类型。
Java不同版本新特性
语法层面Lambda表达式、switch、自动拆箱装箱、enum、泛型API层面Stream API、新的日期时间、Optional、String、集合框架底层优化JVM优化、GC的变化、元空间、静态域、字符串常量池等
垃圾回收器分类
按线程数分垃圾回收线程数可以分为串行垃圾回收器和并行垃圾回收器。
串行回收指的是在同一时间段内只允许有一个CPU用于执行垃圾回收操作此时工作线程被暂停直至垃圾收集工作结束。 在诸如单CPU处理器或者较小的应用内存等硬件平台不是特别优越的场合串行回收器的性能表现可以超过并行回收器和并发回收器。所以串行回收默认被应用在客户端的Client模式下的JVM中在并发能力比较强的CPU上并行回收器产生的停顿时间要短于串行回收器 和串行回收相反并行收集可以运用多个CPU同时执行垃圾回收因此提升了应用的吞吐量不过并行回收仍然与串行回收一样采用独占式使用了“Stop-the-World”机制。
按照工作模式分可以分为并发式垃圾回收器和独占式垃圾回收器。 并发式垃圾回收器与应用程序线程交替工作以尽可能减少应用程序的停顿时间。 独占式垃圾回收器Stop the World一旦运行就停止应用程序中的所有用户线程直到垃圾回收过程完全结束。 按碎片处理方式分可分为压缩式垃圾回收器和非压缩式垃圾回收器。 压缩式垃圾回收器会在回收完成后对存活对象进行压缩整理消除回收后的碎片。再分配对象空间使用指针碰撞 非压缩式的垃圾回收器不进行这步操作分配对象空间使用空闲列表
按工作的内存区间分又可分为年轻代垃圾回收器和老年代垃圾回收器。
评估 GC 的性能指标
指标 吞吐量运行用户代码的时间占总运行时间的比例总运行时间 程序的运行时间 内存回收的时间 垃圾收集开销吞吐量的补数垃圾收集所用时间与总运行时间的比例。 暂停时间执行垃圾收集时程序的工作线程被暂停的时间。 收集频率相对于应用程序的执行收集操作发生的频率。 内存占用Java堆区所占的内存大小。 快速一个对象从诞生到被回收所经历的时间。 吞吐量、暂停时间、内存占用这三者共同构成一个“不可能三角”。三者总体的表现会随着技术进步而越来越好。一款优秀的收集器通常最多同时满足其中的两项。 这三项里暂停时间的重要性日益凸显。因为随着硬件发展内存占用多些越来越能容忍硬件性能的提升也有助于降低收集器运行时对应用程序的影响即提高了吞吐量。而内存的扩大对延迟反而带来负面效果。 简单来说主要抓住两点 吞吐量暂停时间
吞吐量throughput 吞吐量就是CPU用于运行用户代码的时间与CPU总消耗时间的比值即吞吐量运行用户代码时间 /运行用户代码时间垃圾收集时间 比如虚拟机总共运行了100分钟其中垃圾收集花掉1分钟那吞吐量就是99%。 这种情况下应用程序能容忍较高的暂停时间因此高吞吐量的应用程序有更长的时间基准快速响应是不必考虑的 吞吐量优先意味着在单位时间内STW的时间最短0.20.20.4 暂停时间pause time “暂停时间”是指一个时间段内应用程序线程暂停让GC线程执行的状态。 例如GC期间100毫秒的暂停时间意味着在这100毫秒期间内没有应用程序线程是活动的 暂停时间优先意味着尽可能让单次STW的时间最短0.10.1 0.1 0.1 0.10.5但是总的GC时间可能会长 吞吐量 vs 暂停时间 高吞吐量较好因为这会让应用程序的最终用户感觉只有应用程序线程在做“生产性”工作。直觉上吞吐量越高程序运行越快。 低暂停时间低延迟较好是从最终用户的角度来看不管是GC还是其他原因导致一个应用被挂起始终是不好的。这取决于应用程序的类型有时候甚至短暂的200毫秒暂停都可能打断终端用户体验。因此具有较低的暂停时间是非常重要的特别是对于一个交互式应用程序就是和用户交互比较多的场景。 不幸的是”高吞吐量”和”低暂停时间”是一对相互竞争的目标矛盾。 因为如果选择以吞吐量优先那么必然需要降低内存回收的执行频率但是这样会导致GC需要更长的暂停时间来执行内存回收。相反的如果选择以低延迟优先为原则那么为了降低每次执行内存回收时的暂停时间也只能频繁地执行内存回收但这又引起了年轻代内存的缩减和导致程序吞吐量的下降。 在设计或使用GC算法时我们必须确定我们的目标一个GC算法只可能针对两个目标之一即只专注于较大吞吐量或最小暂停时间或尝试找到一个二者的折衷。 现在标准在最大吞吐量优先的情况下降低停顿时间
不同的垃圾回收器概述
垃圾收集机制是Java的招牌能力极大地提高了开发效率。这当然也是面试的热点。那么Java常见的垃圾收集器有哪些
垃圾收集器发展史
有了虚拟机就一定需要收集垃圾的机制这就是Garbage Collection对应的产品我们称为Garbage Collector。
1999年随JDK1.3.1一起来的是串行方式的Serial GC它是第一款GC。ParNew垃圾收集器是Serial收集器的多线程版本2002年2月26日Parallel GC和Concurrent Mark Sweep GC跟随JDK1.4.2一起发布·Parallel GC在JDK6之后成为HotSpot默认GC。2012年在JDK1.7u4版本中G1可用。2017年JDK9中G1变成默认的垃圾收集器以替代CMS。2018年3月JDK10中G1垃圾回收器的并行完整垃圾回收实现并行性来改善最坏情况下的延迟。2018年9月JDK11发布。引入Epsilon 垃圾回收器又被称为 No-Op(无操作)“ 回收器。同时引入ZGC可伸缩的低延迟垃圾回收器Experimental2019年3月JDK12发布。增强G1自动返回未用堆内存给操作系统。同时引入Shenandoah GC低停顿时间的GCExperimental。2019年9月JDK13发布。增强ZGC自动返回未用堆内存给操作系统。2020年3月JDK14发布。删除CMS垃圾回收器。扩展ZGC在macOS和Windows上的应用
7款经典的垃圾收集器
串行回收器Serial、Serial old 并行回收器ParNew、Parallel Scavenge、Parallel old 并发回收器CMS、G1
官方文档
7款经典回收器与垃圾分代之间的关系重点图 新生代收集器Serial、ParNew、Parallel Scavenge 老年代收集器Serial old、Parallel old、CMS 整堆收集器G1
垃圾收集器的组合关系(重点图尽量了解) 两个收集器间有连线表明它们可以搭配使用 Serial/Serial oldSerial/CMS JDK9废弃ParNew/Serial Old JDK9废弃ParNew/CMSParallel Scavenge/Serial Old 预计废弃Parallel Scavenge/Parallel OldG1 其中Serial Old作为CMS出现Concurrent Mode Failure失败的后备预案。 红色虚线由于维护和兼容性测试的成本在JDK 8时将SerialCMS、ParNewSerial Old这两个组合声明为废弃JEP173并在JDK9中完全取消了这些组合的支持JEP214即移除。 绿色虚线JDK14中弃用Parallel Scavenge和Serial Old GC组合JEP366 青色虚线JDK14中删除CMS垃圾回收器JEP363 为什么要有很多收集器一个不够吗因为Java的使用场景很多移动端服务器等。所以就需要针对不同的场景提供不同的垃圾收集器提高垃圾收集的性能。 虽然我们会对各个收集器进行比较但并非为了挑选一个最好的收集器出来。没有一种放之四海皆准、任何场景下都适用的完美收集器存在更加没有万能的收集器。所以我们选择的只是对具体应用最合适的收集器。
查看默认垃圾收集器
-XX:PrintCommandLineFlags查看命令行相关参数包含使用的垃圾收集器使用命令行指令jinfo -flag 相关垃圾回收器参数 进程ID
JDK8
在 JDK 8 下设置 JVM 参数
-XX:PrintCommandLineFlags
程序打印输出-XX:UseParallelGC 表示使用使用 ParallelGC ParallelGC 默认和 Parallel Old 绑定使用
-XX:InitialHeapSize266620736 -XX:MaxHeapSize4265931776 -XX:PrintCommandLineFlags -XX:UseCompressedClassPointers -XX:UseCompressedOops -XX:-UseLargePagesIndividualAllocation -XX:UseParallelGC 通过命令行指令查看
命令行命令
jps
jinfo -flag UseParallelGC 进程id
jinfo -flag UseParallelOldGC 进程idJDK 8 中默认使用 ParallelGC 和 ParallelOldGC 的组合
JDK9 Serial 回收器串行回收
Serial 回收器串行回收 Serial收集器是最基本、历史最悠久的垃圾收集器了。JDK1.3之前回收新生代唯一的选择。 Serial收集器作为HotSpot中Client模式下的默认新生代垃圾收集器。 Serial收集器采用复制算法、串行回收和Stop-the-World机制的方式执行内存回收。 除了年轻代之外Serial收集器还提供用于执行老年代垃圾收集的Serial Old收集器。Serial old收集器同样也采用了串行回收和Stop the World机制只不过内存回收算法使用的是标记-压缩算法。 Serial Old是运行在Client模式下默认的老年代的垃圾回收器Serial Old在Server模式下主要有两个用途①与新生代的Parallel Scavenge配合使用②作为老年代CMS收集器的后备垃圾收集方案
这个收集器是一个单线程的收集器“单线程”的意义它只会使用一个CPU串行或一条收集线程去完成垃圾收集工作。更重要的是在它进行垃圾收集时必须暂停其他所有的工作线程直到它收集结束Stop The World Serial 回收器的优势
优势简单而高效与其他收集器的单线程比对于限定单个CPU的环境来说Serial收集器由于没有线程交互的开销专心做垃圾收集自然可以获得最高的单线程收集效率。运行在Client模式下的虚拟机是个不错的选择。在用户的桌面应用场景中可用内存一般不大几十MB至一两百MB可以在较短时间内完成垃圾收集几十ms至一百多ms只要不频繁发生使用串行回收器是可以接受的。在HotSpot虚拟机中使用-XX:UseSerialGC参数可以指定年轻代和老年代都使用串行收集器。 等价于新生代用Serial GC且老年代用Serial Old GC
总结 这种垃圾收集器大家了解现在已经不用串行的了。而且在限定单核CPU才可以用。现在都不是单核的了。 对于交互较强的应用而言这种垃圾收集器是不能接受的。一般在Java Web应用程序中是不会采用串行垃圾收集器的。
ParNew 回收器并行回收
如果说Serial GC是年轻代中的单线程垃圾收集器那么ParNew收集器则是Serial收集器的多线程版本。 - Par是Parallel的缩写(/ˈpærəlel/)New只能处理新生代ParNew 收集器除了采用并行回收的方式执行内存回收外两款垃圾收集器之间几乎没有任何区别。ParNew收集器在年轻代中同样也是采用复制算法、Stop-the-World机制。ParNew 是很多JVM运行在Server模式下新生代的默认垃圾收集器。 对于新生代回收次数频繁使用并行方式高效。对于老年代回收次数少使用串行方式节省资源。CPU并行需要切换线程串行可以省去切换线程的资源
ParNew 回收器与 Serial 回收器比较
Q由于ParNew收集器基于并行回收那么是否可以断定ParNew收集器的回收效率在任何场景下都会比Serial收集器更高效
A不能
ParNew收集器运行在多CPU的环境下由于可以充分利用多CPU、多核心等物理硬件资源优势可以更快速地完成垃圾收集提升程序的吞吐量。但是在单个CPU的环境下ParNew收集器不比Serial收集器更高效。虽然Serial收集器是基于串行回收但是由于CPU不需要频繁地做任务切换因此可以有效避免多线程交互过程中产生的一些额外开销。除Serial外目前只有ParNew GC能与CMS收集器配合工作
设置 ParNew 垃圾回收器 在程序中开发人员可以通过选项-XX:UseParNewGC手动指定使用ParNew收集器执行内存回收任务。它表示年轻代使用并行收集器不影响老年代。 -XX:ParallelGCThreads限制线程数量默认开启和CPU数据相同的线程数。
Parallel 回收器吞吐量优先
Parallel Scavenge 回收器吞吐量优先 HotSpot的年轻代中除了拥有ParNew收集器是基于并行回收的以外Parallel Scavenge收集器同样也采用了复制算法、并行回收和Stop the World机制 (发现没有新生代都是使用的复制算法)。 那么Parallel收集器的出现是否多此一举 和ParNew收集器不同Parallel Scavenge收集器的目标则是达到一个可控制的吞吐量Throughput它也被称为吞吐量优先的垃圾收集器。自适应调节策略也是Parallel Scavenge与ParNew一个重要区别。动态调整内存分配情况以达到一个最优的吞吐量或低延迟 高吞吐量则可以高效率地利用CPU时间尽快完成程序的运算任务主要适合在后台运算而不需要太多交互的任务。因此常见在服务器环境中使用。例如那些执行批量处理、订单处理、工资支付、科学计算的应用程序。 Parallel收集器在JDK1.6时提供了用于执行老年代垃圾收集的Parallel Old收集器用来代替老年代的Serial Old收集器。 Parallel Old收集器采用了标记-压缩算法但同样也是基于并行回收和Stop-the-World机制。 在程序吞吐量优先的应用场景中Parallel收集器和Parallel Old收集器的组合在server模式下的内存回收性能很不错。 在Java8中默认是此垃圾收集器。
Parallel Scavenge 回收器参数设置 -XX:UseParallelGC 手动指定年轻代使用Parallel并行收集器执行内存回收任务。 -XX:UseParallelOldGC 手动指定老年代都是使用并行回收收集器。 分别适用于新生代和老年代 上面两个参数分别适用于新生代和老年代。默认jdk8是开启的。默认开启一个另一个也会被开启。互相激活 -XX:ParallelGCThreads设置年轻代并行收集器的线程数。一般地最好与CPU数量相等以避免过多的线程数影响垃圾收集性能。 在默认情况下当CPU数量小于8个ParallelGCThreads的值等于CPU数量。 当CPU数量大于8个ParallelGCThreads的值等于3[5*CPU_Count]/8] -XX:MaxGCPauseMillis 设置垃圾收集器最大停顿时间即STW的时间。单位是毫秒。 为了尽可能地把停顿时间控制在XX:MaxGCPauseMillis 以内收集器在工作时会调整Java堆大小或者其他一些参数。对于用户来讲停顿时间越短体验越好。但是在服务器端我们注重高并发整体的吞吐量。所以服务器端适合Parallel进行控制。该参数使用需谨慎。 -XX:GCTimeRatio垃圾收集时间占总时间的比例即等于 1 / (N1) 用于衡量吞吐量的大小。 取值范围(0, 100)。默认值99也就是垃圾回收时间占比不超过1。 与前一个-XX:MaxGCPauseMillis参数有一定矛盾性STW暂停时间越长Radio参数就容易超过设定的比例。 -XX:UseAdaptiveSizePolicy 设置Parallel Scavenge收集器具有自适应调节策略 在这种模式下年轻代的大小、Eden和Survivor的比例、晋升老年代的对象年龄等参数会被自动调整已达到在堆大小、吞吐量和停顿时间之间的平衡点。 在手动调优比较困难的场合可以直接使用这种自适应的方式仅指定虚拟机的最大堆、目标的吞吐量GCTimeRatio和停顿时间MaxGCPauseMillis让虚拟机自己完成调优工作。
CMS 回收器低延迟
CMS 回收器
在JDK1.5时期Hotspot推出了一款在**强交互应用中就是和用户打交道的引用**几乎可认为有划时代意义的垃圾收集器CMSConcurrent-Mark-Sweep收集器这款收集器是HotSpot虚拟机中第一款真正意义上的并发收集器它第一次实现了让垃圾收集线程与用户线程同时工作。CMS收集器的关注点是尽可能缩短垃圾收集时用户线程的停顿时间。停顿时间越短低延迟就越适合与用户交互的程序良好的响应速度能提升用户体验。 目前很大一部分的Java应用集中在互联网站或者B/S系统的服务端上这类应用尤其重视服务的响应速度希望系统停顿时间最短以给用户带来较好的体验。CMS收集器就非常符合这类应用的需求。 CMS的垃圾收集算法采用标记-清除算法(上面parallel old 是标记压缩算法这是由于他们不同的工作原理造成的parallel old的并行只是GC的线程进行了并行但没有和用户线程进行并行处理内存可以压缩更详细的继续往下看)并且也会Stop-the-World不幸的是CMS作为老年代的收集器却无法与JDK1.4.0中已经存在的新生代收集器Parallel Scavenge配合工作因为实现的框架不一样没办法兼容使用所以在JDK1.5中使用CMS来收集老年代的时候新生代只能选择ParNew或者Serial收集器中的一个。在G1出现之前CMS使用还是非常广泛的。一直到今天仍然有很多系统使用CMS GC。
CMS 工作原理过程这个做重点记忆 CMS整个过程比之前的收集器要复杂整个过程分为4个主要阶段即初始标记阶段、并发标记阶段、重新标记阶段和并发清除阶段。(涉及STW的阶段主要是初始标记 和 重新标记)
初始标记Initial-Mark阶段在这个阶段中程序中所有的工作线程都将会因为“Stop-the-World”机制而出现短暂的暂停这个阶段的主要任务仅仅只是标记出GC Roots能直接关联到的对象。一旦标记完成之后就会恢复之前被暂停的所有应用线程。由于直接关联对象比较小所以这里的速度非常快。并发标记Concurrent-Mark阶段从GC Roots的直接关联对象开始遍历整个对象图的过程这个过程耗时较长但是不需要停顿用户线程可以与垃圾收集线程一起并发运行。重新标记Remark阶段由于在并发标记阶段中程序的工作线程会和垃圾收集线程同时运行或者交叉运行因此为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录这个阶段的停顿时间通常会比初始标记阶段稍长一些并且也会导致“Stop-the-World”的发生但也远比并发标记阶段的时间短。并发清除Concurrent-Sweep阶段此阶段清理删除掉标记阶段判断的已经死亡的对象释放内存空间。由于不需要移动存活对象所以这个阶段也是可以与用户线程同时并发的(此时没有stop the world)
CMS分析
尽管CMS收集器采用的是并发回收非独占式但是在其初始化标记和再次标记这两个阶段中仍然需要执行“Stop-the-World”机制暂停程序中的工作线程不过暂停时间并不会太长因此可以说明目前所有的垃圾收集器都做不到完全不需要“Stop-the-World”只是尽可能地缩短暂停时间。 由于最耗费时间的并发标记与并发清除阶段都不需要暂停工作所以整体的回收是低停顿的。另外由于在垃圾收集阶段用户线程没有中断所以在CMS回收过程中还应该确保应用程序用户线程有足够的内存可用。因此CMS收集器不能像其他收集器那样等到老年代几乎完全被填满了再进行收集而是当堆内存使用率达到某一阈值时便开始进行回收以确保应用程序在CMS工作过程中依然有足够的空间支持应用程序运行。要是CMS运行期间预留的内存无法满足程序需要就会出现一次**“Concurrent Mode Failure”** 失败这时虚拟机将启动后备预案临时启用Serial old收集器来重新进行老年代的垃圾收集这样停顿时间就很长了。CMS收集器的垃圾收集算法采用的是标记清除算法这意味着每次执行完内存回收后由于被执行内存回收的无用对象所占用的内存空间极有可能是不连续的一些内存块不可避免地将会产生一些内存碎片。那么CMS在为新对象分配内存空间时将无法使用指针碰撞Bump the Pointer技术而只能够选择空闲列表Free List执行内存分配。
为什么 CMS 不采用标记-压缩算法呢
答案其实很简答因为当并发清除的时候**(没有stop the world)**用Compact整理内存的话原来的用户线程使用的内存还怎么用呢要保证用户线程能继续执行前提的它运行的资源不受影响嘛。Mark Compact更适合“stop the world”这种场景下使用
CMS 的优点与弊端
优点
并发收集低延迟
弊端
会产生内存碎片导致并发清除后用户线程可用的空间不足。在无法分配大对象的情况下不得不提前触发Full GC。CMS收集器对CPU资源非常敏感。在并发阶段它虽然不会导致用户停顿但是会因为占用了一部分线程而导致应用程序变慢总吞吐量会降低。CMS收集器无法处理浮动垃圾。可能出现“Concurrent Mode Failure失败而导致另一次Full GC的产生。在并发标记阶段由于程序的工作线程和垃圾收集线程是同时运行或者交叉运行的**那么在并发标记阶段如果产生新的垃圾对象CMS将无法对这些垃圾对象进行标记最终会导致这些新产生的垃圾对象没有被及时回收**从而只能在下一次执行GC时释放这些之前未被回收的内存空间。
CMS 参数配置 -XX:UseConcMarkSweepGC手动指定使用CMS收集器执行内存回收任务。 开启该参数后会自动将-XX:UseParNewGC打开。即ParNewYoung区CMSOld区Serial OldOld区备选方案的组合。 -XX:CMSInitiatingOccupanyFraction设置堆内存使用率的阈值一旦达到该阈值便开始进行回收。 JDK5及以前版本的默认值为68即当老年代的空间使用率达到68%时会执行一次CMS回收。JDK6及以上版本默认值为92% 如果内存增长缓慢则可以设置一个稍大的值大的阀值可以有效降低CMS的触发频率减少老年代回收的次数可以较为明显地改善应用程序性能。反之如果应用程序内存使用率增长很快则应该降低这个阈值以避免频繁触发老年代串行收集器。因此通过该选项便可以有效降低Full GC的执行次数。 -XX:UseCMSCompactAtFullCollection用于指定在执行完Full GC后对内存空间进行压缩整理以此避免内存碎片的产生。不过由于内存压缩整理过程无法并发执行所带来的问题就是停顿时间变得更长了。 -XX:CMSFullGCsBeforeCompaction设置在执行多少次Full GC后对内存空间进行压缩整理。 -XX:ParallelCMSThreads设置CMS的线程数量。
CMS默认启动的线程数是 (ParallelGCThreads 3) / 4ParallelGCThreads是年轻代并行收集器的线程数可以当做是 CPU 最大支持的线程数。当CPU资源比较紧张时受到CMS收集器线程的影响应用程序的性能在垃圾回收阶段可能会非常糟糕。
小结
HotSpot有这么多的垃圾回收器那么如果有人问Serial GC、Parallel GC、Concurrent Mark Sweep GC这三个GC有什么不同呢
如果你想要最小化地使用内存和并行开销请选Serial GC如果你想要最大化应用程序的吞吐量请选Parallel GC如果你想要最小化GC的中断或停顿时间请选CMS GC。
JDK 后续版本中 CMS 的变化
JDK9新特性CMS被标记为Deprecate了JEP291 如果对JDK9及以上版本的HotSpot虚拟机使用参数-XX:UseConcMarkSweepGC来开启CMS收集器的话用户会收到一个警告信息提示CMS未来将会被废弃。 JDK14新特性删除CMS垃圾回收器JEP363移除了CMS垃圾收集器 如果在JDK14中使用XX:UseConcMarkSweepGC的话JVM不会报错只是给出一个warning信息但是不会exit。JVM会自动回退以默认GC方式启动JVM
G1 回收器区域化分代式
为什么还需要G1
既然我们已经有了前面几个强大的 GC 为什么还要发布 Garbage FirstG1GC
原因就在于应用程序所应对的业务越来越庞大、复杂用户越来越多没有GC就不能保证应用程序正常进行而经常造成STW的GC又跟不上实际的需求所以才会不断地尝试对GC进行优化。G1Garbage-First垃圾回收器是在Java7 update4之后引入的一个新的垃圾回收器是当今收集器技术发展的最前沿成果之一。与此同时为了适应现在不断扩大的内存和不断增加的处理器数量进一步降低暂停时间pause time同时兼顾良好的吞吐量。官方给G1设定的目标是在延迟可控的情况下获得尽可能高的吞吐量所以才担当起“全功能收集器”的重任与期望。
为什么名字叫Garbage First(G1)呢
因为G1是一个并行回收器它把堆内存分割为很多不相关的区域Region物理上不连续的。使用不同的Region来表示Eden、幸存者0区幸存者1区老年代等。G1 GC有计划地避免在整个Java堆中进行全区域的垃圾收集。G1跟踪各个Region里面的垃圾堆积的价值大小回收所获得的空间大小以及回收所需时间的经验值在后台维护一个优先列表每次根据允许的收集时间优先回收价值最大的Region。由于这种方式的侧重点在于回收垃圾最大量的区间Region所以我们给G1一个名字垃圾优先Garbage First。G1Garbage-First是一款面向服务端应用的垃圾收集器主要针对配备多核CPU及大容量内存的机器以极高概率满足GC停顿时间的同时还兼具高吞吐量的性能特征。在JDK1.7版本正式启用移除了Experimental的标识是JDK9以后的默认垃圾回收器取代了CMS回收器以及ParallelParallel Old组合。被Oracle官方称为**“全功能的垃圾收集器”**。与此同时CMS已经在JDK9中被标记为废弃deprecated。G1在JDK8中还不是默认的垃圾回收器需要使用-XX:UseG1GC来启用。
G1 回收器的优势
与其他GC收集器相比G1使用了全新的分区算法其特点如下所示
并行与并发兼备 并行性G1在回收期间可以有多个GC线程同时工作有效利用多核计算能力。此时用户线程STW并发性G1拥有与应用程序交替执行的能力部分工作可以和应用程序同时执行因此一般来说不会在整个回收阶段发生完全阻塞应用程序的情况 分代收集 从分代上看G1依然属于分代型垃圾回收器它会区分年轻代和老年代年轻代依然有Eden区和Survivor区。但从堆的结构上看它不要求整个Eden区、年轻代或者老年代都是连续的也不再坚持固定大小和固定数量。将堆空间分为若干个区域Region这些区域中包含了逻辑上的年轻代和老年代。和之前的各类回收器不同它同时兼顾年轻代和老年代。对比其他回收器或者工作在年轻代或者工作在老年代
G1的分代已经不是下面这样的了 G1的分区是这样的一个区域 空间整合
CMS“标记-清除”算法、内存碎片、若干次GC后进行一次碎片整理G1将内存划分为一个个的region。内存的回收是以region作为基本单位的。Region之间是复制算法但整体上实际可看作是标记-压缩Mark-Compact算法 (重点理解一下垃圾回收的时候新生代会有其他回收器一样使用复制算法把一个region中的存活内容复制到另外一个Survivor中的region中但是在做复制的操作时也会把Eden和Survior中的内存空间进行压缩变成一个连续的内存空间)两种算法都可以避免内存碎片。这种特性有利于程序长时间运行分配大对象时不会因为无法找到连续内存空间而提前触发下一次GC。尤其是当Java堆非常大的时候G1的优势更加明显。
可预测的停顿时间模型
可预测的停顿时间模型即软实时soft real-time
这是G1相对于CMS的另一大优势G1除了追求低停顿外还能建立可预测的停顿时间模型能让使用者明确指定在一个长度为M毫秒的时间片段内消耗在垃圾收集上的时间不得超过N毫秒。
由于分区的原因G1可以只选取部分区域进行内存回收这样缩小了回收的范围因此对于全局停顿情况的发生也能得到较好的控制。G1跟踪各个Region里面的垃圾堆积的价值大小回收所获得的空间大小以及回收所需时间的经验值在后台维护一个优先列表每次根据允许的收集时间优先回收价值最大的Region。保证了G1收集器在有限的时间内可以获取尽可能高的收集效率。相比于CMS GCG1未必能做到CMS在最好情况下的延时停顿但是最差情况要好很多。
G1 回收器的缺点
相较于CMSG1还不具备全方位、压倒性优势。比如在用户程序运行过程中G1无论是为了垃圾收集产生的内存占用Footprint还是程序运行时的额外执行负载overload都要比CMS要高。从经验上来说在小内存应用上CMS的表现大概率会优于G1而G1在大内存应用上则发挥其优势。平衡点在6-8GB之间。
G1 参数设置 -XX:UseG1GC手动指定使用G1垃圾收集器执行内存回收任务 -XX:G1HeapRegionSize设置每个Region的大小。值是2的幂范围是1MB到32MB之间目标是根据最小的Java堆大小划分出约2048个区域。默认是堆内存的1/2000。 -XX:MaxGCPauseMillis设置期望达到的最大GC停顿时间指标JVM会尽力实现但不保证达到。默认值是200ms -XX:ParallelGCThread设置STW工作线程数的值。最多设置为8 -XX:ConcGCThreads设置并发标记的线程数。将n设置为并行垃圾回收线程数ParallelGcThreads的1/4左右。 -XX:InitiatingHeapOccupancyPercent设置触发并发GC周期的Java堆占用率阈值。超过此值就触发GC。默认值是45。
G1 收集器的常见操作步骤
G1的设计原则就是简化JVM性能调优开发人员只需要简单的三步即可完成调优
第一步开启G1垃圾收集器第二步设置堆的最大内存第三步设置最大的停顿时间
G1中提供了三种垃圾回收模式YoungGC、Mixed GC和Full GC在不同的条件下被触发。
G1 的适用场景
面向服务端应用针对具有大内存、多处理器的机器。在普通大小的堆里表现并不惊喜最主要的应用是需要低GC延迟并具有大堆的应用程序提供解决方案如在堆大小约6GB或更大时可预测的暂停时间可以低于0.5秒G1通过每次只清理一部分而不是全部的Region的增量式清理来保证每次GC停顿时间不会过长。用来替换掉JDK1.5中的CMS收集器在下面的情况时使用G1可能比CMS好 超过50%的Java堆被活动数据占用对象分配频率或年代提升频率变化很大GC停顿时间过长长于0.5至1秒 HotSpot垃圾收集器里除了G1以外其他的垃圾收集器均使用内置的JVM线程执行GC的多线程操作而G1 GC可以采用应用线程承担后台运行的GC工作即当JVM的GC线程处理速度慢时系统会调用应用程序线程帮助加速垃圾回收过程。
分区 Region
分区 Region化整为零 使用G1收集器时它将整个Java堆划分成约2048个大小相同的独立Region块每个Region块大小根据堆空间的实际大小而定整体被控制在1MB到32MB之间且为2的N次幂即1MB2MB4MB8MB16MB32MB。可以通过 XX:G1HeapRegionSize设定。所有的Region大小相同且在JVM生命周期内不会被改变。 虽然还保留有新生代和老年代的概念但新生代和老年代不再是物理隔离的了它们都是一部分Region不需要连续的集合。通过Region的动态分配方式实现逻辑上的连续。 一个Region有可能属于EdenSurvivor或者Old/Tenured内存区域。但是一个Region只可能属于一个角色。图中的E表示该Region属于Eden内存区域S表示属于Survivor内存区域O表示属于Old内存区域。图中空白的表示未使用的内存空间。 G1垃圾收集器还增加了一种新的内存区域叫做Humongous内存区域如图中的H块。主要用于存储大对象如果超过0.5个Region就放到H。 纠错尚硅谷视频里这里写的是超过1.5个region。根据官方文档: The G1 Garbage Collector Step by Step As shown regions can be allocated into Eden, survivor, and old generation regions. In addition, there is a fourth type of object known as Humongous regions. These regions are designed to hold objects that are 50% the size of a standard region or larger. They are stored as a set of contiguous regions. Finally the last type of regions would be the unused areas of the heap. 翻译 如图所示可以将区域分配到Eden幸存者和旧时代区域。 此外还有第四种类型的物体被称为巨大区域。 这些区域旨在容纳标准区域大小的50或更大的对象。 它们存储为一组连续区域。 最后最后一种区域类型是堆的未使用区域。 设置 H 的原因
对于堆中的大对象默认直接会被分配到老年代但是如果它是一个短期存在的大对象就会对垃圾收集器造成负面影响。为了解决这个问题G1划分了一个Humongous区它用来专门存放大对象。如果一个H区装不下一个大对象那么G1会寻找连续的H区来存储。为了能找到连续的H区有时候不得不启动Full GC。G1的大多数行为都把H区作为老年代的一部分来看待。
Regio的细节
每个Region都是通过指针碰撞来分配空间G1为每一个Region设 计了两个名为TAMSTop at Mark Start的指针把Region中的一部分空间划分出来用于并发回收过程中的新对象分配并发回收时新分配的对象地址都必须要在这两个指针位置以上。TLAB还是用来保证并发性
G1 垃圾回收流程
G1 GC的垃圾回收过程主要包括如下三个环节
年轻代GCYoung GC老年代并发标记过程Concurrent Marking混合回收Mixed GC如果需要单线程、独占式、高强度的Full GC还是继续存在的。它针对GC的评估失败提供了一种失败保护机制即强力回收。 顺时针Young GC -- Young GCConcurrent Marking -- Mixed GC顺序进行垃圾回收
回收流程
应用程序分配内存当年轻代的Eden区用尽时开始年轻代回收过程G1的年轻代收集阶段是一个并行的独占式收集器。在年轻代回收期G1 GC暂停所有应用程序线程启动多线程执行年轻代回收。然后从年轻代区间移动存活对象到Survivor区间或者老年区间也有可能是两个区间都会涉及。当堆内存使用达到一定值默认45%时开始老年代并发标记过程。标记完成马上开始混合回收过程。对于一个混合回收期G1 GC从老年区间移动存活对象到空闲区间这些空闲区间也就成为了老年代的一部分。和年轻代不同老年代的G1回收器和其他GC不同G1的老年代回收器不需要整个老年代被回收一次只需要扫描/回收一小部分老年代的Region就可以了。同时这个老年代Region是和年轻代一起被回收的。举个例子一个Web服务器Java进程最大堆内存为4G每分钟响应1500个请求每45秒钟会新分配大约2G的内存。G1会每45秒钟进行一次年轻代回收每31个小时整个堆的使用率会达到45%会开始老年代并发标记过程标记完成后开始四到五次的混合回收。
Remembered Set记忆集 之前讲过 一个对象被不同区域引用的问题 一个Region不可能是孤立的一个Region中的对象可能被其他任意Region中对象引用判断对象存活时是否需要扫描整个Java堆才能保证准确 在其他的分代收集器也存在这样的问题而G1更突出因为G1主要针对大堆 回收新生代也不得不同时扫描老年代这样的话会降低Minor GC的效率
解决方法 无论G1还是其他分代收集器JVM都是使用Remembered Set来避免全堆扫描 每个Region都有一个对应的Remembered Set 每次Reference类型数据写操作时都会产生一个Write Barrier暂时中断操作 然后检查将要写入的引用指向的对象是否和该Reference类型数据在不同的Region其他收集器检查老年代对象是否引用了新生代对象 如果不同通过CardTable把相关引用信息记录到引用指向对象的所在Region对应的Remembered Set中 当进行垃圾收集时在GC根节点的枚举范围加入Remembered Set就可以保证不进行全局扫描也不会有遗漏。 在回收 Region 时为了不进行全堆的扫描引入了 Remembered SetRemembered Set 记录了当前 Region 中的对象被哪个对象引用了这样在进行 Region 复制时就不要扫描整个堆只需要去 Remembered Set 里面找到引用了当前 Region 的对象Region 复制完毕后修改 Remembered Set 中对象的引用即可
G1回收过程一年轻代 GC
JVM启动时G1先准备好Eden区程序在运行过程中不断创建对象到Eden区当Eden空间耗尽时G1会启动一次年轻代垃圾回收过程。年轻代回收只回收Eden区和Survivor区YGC时首先G1停止应用程序的执行Stop-The-WorldG1创建回收集Collection Set回收集是指需要被回收的内存分段的集合年轻代回收过程的回收集包含年轻代Eden区和Survivor区所有的内存分段。 图的大致意思就是
1、回收完E和S区剩余存活的对象会复制到新的S区
2、S区达到一定的阈值可以晋升为O区
细致过程
然后开始如下回收过程 第一阶段扫描根 根是指GC Roots根引用连同RSet记录的外部引用作为扫描存活对象的入口。 第二阶段更新RSet 第三阶段处理RSet 识别被老年代对象指向的Eden中的对象这些被指向的Eden中的对象被认为是存活的对象。 第四阶段复制对象。 此阶段对象树被遍历Eden区内存段中存活的对象会被复制到Survivor区中空的内存分段Survivor区内存段中存活的对象如果年龄未达阈值年龄会加1达到阀值会被会被复制到Old区中空的内存分段。如果Survivor空间不够Eden空间的部分数据会直接晋升到老年代空间。 第五阶段处理引用 处理SoftWeakPhantomFinalJNI Weak 等引用。最终Eden空间的数据为空GC停止工作而目标内存中的对象都是连续存储的没有碎片所以复制过程可以达到内存整理的效果减少碎片。
备注
对于应用程序的引用赋值语句 oldObject.field这个是老年代object这个是新生代JVM会在之前和之后执行特殊的操作以在dirty card queue中入队一个保存了对象引用信息的card。在年轻代回收的时候G1会对Dirty Card Queue中所有的card进行处理以更新RSet保证RSet实时准确的反映引用关系。那为什么不在引用赋值语句处直接更新RSet呢这是为了性能的需要RSet的处理需要线程同步开销会很大使用队列性能会好很多。
G1回收过程二并发标记过程
初始标记阶段标记从根节点直接可达的对象。这个阶段是STW的并且会触发一次年轻代GC。正是由于该阶段时STW的所以我们只扫描根节点可达的对象以节省时间。根区域扫描Root Region ScanningG1 GC扫描Survivor区直接可达的老年代区域对象并标记被引用的对象。这一过程必须在Young GC之前完成因为Young GC会使用复制算法对Survivor区进行GC。并发标记Concurrent Marking 在整个堆中进行并发标记和应用程序并发执行此过程可能被Young GC中断。在并发标记阶段若发现区域对象中的所有对象都是垃圾那这个区域会被立即回收。同时并发标记过程中会计算每个区域的对象活性区域中存活对象的比例。 再次标记Remark由于应用程序持续进行需要修正上一次的标记结果。是STW的。G1中采用了比CMS更快的原始快照算法Snapshot-At-The-BeginningSATB。独占清理cleanupSTW计算各个区域的存活对象和GC回收比例并进行排序识别可以混合回收的区域。为下阶段做铺垫。是STW的。这个阶段并不会实际上去做垃圾的收集并发清理阶段识别并清理完全空闲的区域。
G1回收过程三混合回收过程
当越来越多的对象晋升到老年代Old Region时为了避免堆内存被耗尽虚拟机会触发一个混合的垃圾收集器即Mixed GC该算法并不是一个Old GC除了回收整个Young Region还会回收一部分的Old Region。这里需要注意是一部分老年代而不是全部老年代。可以选择哪些Old Region进行收集从而可以对垃圾回收的耗时时间进行控制。也要注意的是Mixed GC并不是Full GC。 混合回收的细节
并发标记结束以后老年代中百分百为垃圾的内存分段被回收了部分为垃圾的内存分段被计算了出来。默认情况下这些老年代的内存分段会分8次可以通过-XX:G1MixedGCCountTarget设置被回收。【意思就是一个Region会被分为8个内存段】混合回收的回收集Collection Set包括八分之一的老年代内存分段Eden区内存分段Survivor区内存分段。混合回收的算法和年轻代回收的算法完全一样只是回收集多了老年代的内存分段。具体过程请参考上面的年轻代回收过程。由于老年代中的内存分段默认分8次回收G1会优先回收垃圾多的内存分段。垃圾占内存分段比例越高的越会被先回收。并且有一个阈值会决定内存分段是否被回收。XX:G1MixedGCLiveThresholdPercent默认为65%意思是垃圾占内存分段比例要达到65%才会被回收。如果垃圾占比太低意味着存活的对象占比高在复制的时候会花费更多的时间。混合回收并不一定要进行8次。有一个阈值-XX:G1HeapWastePercent默认值为10%意思是允许整个堆内存中有10%的空间被浪费意味着如果发现可以回收的垃圾占堆内存的比例低于10%则不再进行混合回收。因为GC会花费很多的时间但是回收到的内存却很少。
G1 回收可选的过程四Full GC G1的初衷就是要避免Full GC的出现。但是如果上述方式不能正常工作G1会停止应用程序的执行Stop-The-World使用单线程的内存回收算法进行垃圾回收性能会非常差应用程序停顿时间会很长。 要避免Full GC的发生一旦发生Full GC需要对JVM参数进行调整。什么时候会发生Ful1GC呢比如堆内存太小当G1在复制存活对象的时候没有空的内存分段可用则会回退到Full GC这种情况可以通过增大内存解决。
导致G1 Full GC的原因可能有两个
EVacuation的时候没有足够的to-space来存放晋升的对象并发处理过程完成之前空间耗尽。
G1补充
从Oracle官方透露出来的信息可获知回收阶段Evacuation其实本也有想过设计成与用户程序一起并发执行但这件事情做起来比较复杂考虑到G1只是回一部分Region停顿时间是用户可控制的所以并不迫切去实现**而选择把这个特性放到了G1之后出现的低延迟垃圾收集器即ZGC中。**另外还考虑到G1不是仅仅面向低延迟停顿用户线程能够最大幅度提高垃圾收集效率为了保证吞吐量所以才选择了完全暂停用户线程的实现方案。
G1 回收器的优化建议
年轻代大小 避免使用-Xmn或-XX:NewRatio等相关选项显式设置年轻代大小因为固定年轻代的大小会覆盖可预测的暂停时间目标。我们让G1自己去调整 暂停时间目标不要太过严苛 G1 GC的吞吐量目标是90%的应用程序时间和10%的垃圾回收时间评估G1 GC的吞吐量时暂停时间目标不要太严苛。目标太过严苛表示你愿意承受更多的垃圾回收开销而这些会直接影响到吞吐量。
垃圾回收器总结
7 种垃圾回收器的比较
截止JDK1.8一共有7款不同的垃圾收集器。每一款的垃圾收集器都有不同的特点在具体使用的时候需要根据具体的情况选用不同的垃圾收集器(重点记忆图)。
怎么选择垃圾回收器
Java垃圾收集器的配置对于JVM优化来说是一个很重要的选择选择合适的垃圾收集器可以让JVM的性能有一个很大的提升。怎么选择垃圾收集器
优先调整堆的大小让JVM自适应完成。如果内存小于100M使用串行收集器如果是单核、单机程序并且没有停顿时间的要求串行收集器如果是多CPU、需要高吞吐量、允许停顿时间超过1秒选择并行或者JVM自己选择如果是多CPU、追求低停顿时间需快速响应比如延迟不能超过1秒如互联网应用使用并发收集器官方推荐G1性能高。现在互联网的项目基本都是使用G1。
最后需要明确一个观点
没有最好的收集器更没有万能的收集算法调优永远是针对特定场景、特定需求不存在一劳永逸的收集器
面试
对于垃圾收集面试官可以循序渐进从理论、实践各种角度深入也未必是要求面试者什么都懂。但如果你懂得原理一定会成为面试中的加分项。这里较通用、基础性的部分如下 垃圾收集的算法有哪些如何判断一个对象是否可以回收 复制算法标记-清除法标记-压缩法垃圾收集器工作的基本流程。 当新生代中的eden区满了之后会进行一次minor GC 把eden区中的幸存对象通过复制算法复制到s0区中也就是survivor 0区中当eden区中的再次满了之后就会通过复制算法把eden区和s0区中的幸存对象复制到s1中也就是survivor 1区中这其中寻找幸存对象使用的是可达性分析法在上面的操作步骤中每复制转移一次如果一个对象被转移的次数超过了15次这是一个默认值可以修改就会被放置到老年代中如果老年代中的内存满了那么就会进行full gc把新生代和老年代都回收一遍如果回收完了之后还是不能存放要产生的对象的话就会报oom,大致流程就是这样的 另外大家需要多关注垃圾回收器这一章的各种常用的参数
GC 日志分析(这里要经常性回顾)
常用参数配置 GC 日志参数设置 通过阅读GC日志我们可以了解Java虚拟机内存分配与回收策略。
内存分配与垃圾回收的参数列表
-XX:PrintGC 输出GC日志。类似-verbose:gc-XX:PrintGCDetails 输出GC的详细日志-XX:PrintGCTimestamps 输出GC的时间戳以基准时间的形式-XX:PrintGCDatestamps 输出GC的时间戳以日期的形式如2013-05-04T21: 53: 59.234 0800-XX:PrintHeapAtGC 在进行GC的前后打印出堆的信息-Xloggc:…/logs/gc.log 日志文件的输出路径 verbose:gc 1、JVM 参数
-verbose:gc
2、这个只会显示总的GC堆的变化如下
3、参数解析 PrintGCDetails 1、JVM 参数
-XX:PrintGCDetails
2、输入信息如下 3、参数解析 PrintGCTimestamps 和 PrintGCDatestamps 1、JVM 参数
-XX:PrintGCTimeStamps -XX:PrintGCDateStamps
2、输出信息如下
3、说明日志带上了日期和时间
GC 日志补充说明 “[GC和”[Full GC说明了这次垃圾收集的停顿类型如果有Full则说明GC发生了Stop The World 使用Serial收集器在新生代的名字是Default New Generation因此显示的是[DefNew 使用ParNew收集器在新生代的名字会变成[ParNew意思是Parallel New Generation 使用Parallel scavenge收集器在新生代的名字是”[PSYoungGen 老年代的收集和新生代道理一样名字也是收集器决定的 使用G1收集器的话会显示为garbage-first heap Allocation Failure表明本次引起GC的原因是因为在年轻代中没有足够的空间能够存储新的数据了。 [ PSYoungGen: 5986K-696K(8704K) ] 5986K-704K (9216K) 中括号内GC回收前年轻代大小回收后大小年轻代总大小括号外GC回收前年轻代和老年代大小回收后大小年轻代和老年代总大小 user代表用户态回收耗时sys内核态回收耗时real实际耗时。由于多核线程切换的原因时间总和可能会超过real时间
Young GC Full GC 举例
/*** 在jdk7 和 jdk8中分别执行* -verbose:gc -Xms20M -Xmx20M -Xmn10M -XX:PrintGCDetails -XX:SurvivorRatio8 -XX:UseSerialGC*/
public class GCLogTest1 {private static final int _1MB 1024 * 1024;public static void testAllocation() {byte[] allocation1, allocation2, allocation3, allocation4;allocation1 new byte[2 * _1MB];allocation2 new byte[2 * _1MB];allocation3 new byte[2 * _1MB];allocation4 new byte[4 * _1MB];}public static void main(String[] agrs) {testAllocation();}
}JDK7 中的情况
1、首先我们会将3个2M的数组存放到Eden区然后后面4M的数组来了后将无法存储因为Eden区只剩下2M的剩余空间了那么将会进行一次Young GC操作将原来Eden区的内容存放到Survivor区但是Survivor区也存放不下那么就会直接晋级存入Old 区 2、然后我们将4M对象存入到Eden区中
老年代图画的有问题free应该是4M
JDK8 中的情况
com.atguigu.java.GCLogTest1
[GC (Allocation Failure) [DefNew: 6322K-668K(9216K), 0.0034812 secs] 6322K-4764K(19456K), 0.0035169 secs] [Times: user0.00 sys0.00, real0.00 secs]
Heapdef new generation total 9216K, used 7050K [0x00000000fec00000, 0x00000000ff600000, 0x00000000ff600000)eden space 8192K, 77% used [0x00000000fec00000, 0x00000000ff23b668, 0x00000000ff400000)from space 1024K, 65% used [0x00000000ff500000, 0x00000000ff5a71d8, 0x00000000ff600000)to space 1024K, 0% used [0x00000000ff400000, 0x00000000ff400000, 0x00000000ff500000)tenured generation total 10240K, used 4096K [0x00000000ff600000, 0x0000000100000000, 0x0000000100000000)the space 10240K, 40% used [0x00000000ff600000, 0x00000000ffa00020, 0x00000000ffa00200, 0x0000000100000000)Metaspace used 3469K, capacity 4496K, committed 4864K, reserved 1056768Kclass space used 381K, capacity 388K, committed 512K, reserved 1048576KProcess finished with exit code 0 与 JDK7 不同的是JDK8 直接判定 4M 的数组为大对象直接怼到老年区去了
常用日志分析工具
保存日志文件
JVM参数-XLoggc:./logs/gc.log ./ 表示当前目录在 IDEA中程序运行的当前目录是工程的根目录而不是模块的根目录
可以用一些工具去分析这些GC日志常用的日志分析工具有
GCViewer、GCEasy、GCHisto、GCLogViewer、Hpjmeter、garbagecat等
推荐GCeasy
在线分析网址gceasy.io 垃圾回收器的新发展
垃圾回收器的发展过程
GC仍然处于飞速发展之中目前的默认选项G1 GC在不断的进行改进很多我们原来认为的缺点例如串行的Full GC、Card Table扫描的低效等都已经被大幅改进例如JDK10以后Fu11GC已经是并行运行在很多场景下其表现还略优于ParallelGC的并行Ful1GC实现。即使是SerialGC虽然比较古老但是简单的设计和实现未必就是过时的它本身的开销不管是GC相关数据结构的开销还是线程的开销都是非常小的所以随着云计算的兴起在serverless等新的应用场景下Serial Gc找到了新的舞台。比较不幸的是CMSGC因为其算法的理论缺陷等原因虽然现在还有非常大的用户群体但在JDK9中已经被标记为废弃并在JDK14版本中移除现在G1回收器已成为默认回收器好几年了。我们还看到了引入了两个新的收集器ZGCJDK11出现和ShenandoahOpen JDK12其特点主打低停顿时间
Shenandoah GC
Open JDK12的Shenandoash GC低停顿时间的GC实验性 Shenandoah无疑是众多GC中最孤独的一个。是第一款不由Oracle公司团队领导开发的Hotspot垃圾收集器。不可避免的受到官方的排挤。比如号称openJDK和OracleJDK没有区别的Oracle公司仍拒绝在OracleJDK12中支持Shenandoah。 Shenandoah垃圾回收器最初由RedHat进行的一项垃圾收集器研究项目Pauseless GC的实现旨在针对JVM上的内存回收实现低停顿的需求。在2014年贡献给OpenJDK。 Red Hat研发Shenandoah团队对外宣称Shenandoah垃圾回收器的暂停时间与堆大小无关这意味着无论将堆设置为200MB还是200GB99.9%的目标都可以把垃圾收集的停顿时间限制在十毫秒以内。不过实际使用性能将取决于实际工作堆的大小和工作负载。
这是RedHat在2016年发表的论文数据测试内容是使用ES对200GB的维基百科数据进行索引。从结果看
停顿时间比其他几款收集器确实有了质的飞跃但也未实现最大停顿时间控制在十毫秒以内的目标。而吞吐量方面出现了明显的下降总运行时间是所有测试收集器里最长的。 总结
Shenandoah GC的弱项高运行负担下的吞吐量下降。Shenandoah GC的强项低延迟时间。
令人震惊、革命性的 ZGC 官方文档https://docs.oracle.com/en/java/javase/12/gctuning/ ZGC与Shenandoah目标高度相似在尽可能对吞吐量影响不大的前提下实现在任意堆内存大小下都可以把垃圾收集的停颇时间限制在十毫秒以内的低延迟。 《深入理解Java虚拟机》一书中这样定义ZGCZGC收集器是一款基于Region内存布局的暂时不设分代的使用了读屏障、染色指针和内存多重映射等技术来实现可并发的标记-压缩算法的以低延迟为首要目标的一款垃圾收集器。 ZGC的工作过程可以分为4个阶段并发标记 - 并发预备重分配 - 并发重分配 - 并发重映射 等。 ZGC几乎在所有地方并发执行的除了初始标记的是STW的。所以停顿时间几乎就耗费在初始标记上这部分的实际时间是非常少的。
吞吐量 max-JOPS以低延迟为首要前提下的数据
critical-JOPS不考虑低延迟下的数据
低延迟 在ZGC的强项停顿时间测试上它毫不留情的将Parallel、G1拉开了两个数量级的差距。无论平均停顿、95%停顿、998停顿、99. 98停顿还是最大停顿时间ZGC都能毫不费劲控制在10毫秒以内。
虽然ZGC还在试验状态没有完成所有特性但此时性能已经相当亮眼用“令人震惊、革命性”来形容不为过。未来将在服务端、大内存、低延迟应用的首选垃圾收集器。 JDK14之前ZGC仅Linux才支持。 尽管许多使用ZGC的用户都使用类Linux的环境但在Windows和macOS上人们也需要ZGC进行开发部署和测试。许多桌面应用也可以从ZGC中受益。因此ZGC特性被移植到了Windows和macOS上。 现在mac或Windows上也能使用ZGC了示例如下 -XX:UnlockExperimentalVMOptions-XXUseZGC
面向大堆的 AliGC
AliGC是阿里巴巴JVM团队基于G1算法面向大堆LargeHeap应用场景。指定场景下的对比