江苏建设厅网站首页,设计师网名名字,wordpress多重搜索,国际市场营销案例100例运行环境#xff1a;
MacOS#xff1a;14.0Python 3.9Pytorch2.1onnx 运行时
模型文件#xff1a; https://wwxd.lanzouu.com/iBqiA1g49pbc 密码:f40v 下载 best.apk后将后缀名修改为 onnx 即可模型在英伟达 T4GPU 使用 coco128 训练了 200 轮如遇下载不了可私信获取
代码…
运行环境
MacOS14.0Python 3.9Pytorch2.1onnx 运行时
模型文件 https://wwxd.lanzouu.com/iBqiA1g49pbc 密码:f40v 下载 best.apk后将后缀名修改为 onnx 即可模型在英伟达 T4GPU 使用 coco128 训练了 200 轮如遇下载不了可私信获取
代码
import copy
import timeimport onnxruntime as rt
import numpy as np
import cv2
import concurrent.futures# 前处理
def resize_image(image, size, letterbox_image):对输入图像进行resizeArgs:size:目标尺寸letterbox_image: bool 是否进行letterbox变换Returns:指定尺寸的图像ih, iw, _ image.shapeh, w size# letterbox_image Falseif letterbox_image:scale min(w / iw, h / ih)nw int(iw * scale)nh int(ih * scale)image cv2.resize(image, (nw, nh), interpolationcv2.INTER_LINEAR)image_back np.ones((h, w, 3), dtypenp.uint8) * 128image_back[(h - nh) // 2: (h - nh) // 2 nh, (w - nw) // 2:(w - nw) // 2 nw, :] imageelse:image_back imagereturn image_backdef img2input(img):img np.transpose(img, (2, 0, 1))img img / 255return np.expand_dims(img, axis0).astype(np.float32)def std_output(pred):将1848400处理成8400 85 85 box:4 conf:1 cls:80pred np.squeeze(pred)pred np.transpose(pred, (1, 0))pred_class pred[..., 4:]pred_conf np.max(pred_class, axis-1)pred np.insert(pred, 4, pred_conf, axis-1)return preddef xywh2xyxy(*box):将xywh转换为左上角点和左下角点Args:box:Returns: x1y1x2y2ret [box[0] - box[2] // 2, box[1] - box[3] // 2, \box[0] box[2] // 2, box[1] box[3] // 2]return retdef get_inter(box1, box2):计算相交部分面积Args:box1: 第一个框box2: 第二个狂Returns: 相交部分的面积x1, y1, x2, y2 xywh2xyxy(*box1)x3, y3, x4, y4 xywh2xyxy(*box2)# 验证是否存在交集if x1 x4 or x2 x3:return 0if y1 y4 or y2 y3:return 0# 将x1,x2,x3,x4排序因为已经验证了两个框相交所以x3-x2就是交集的宽x_list sorted([x1, x2, x3, x4])x_inter x_list[2] - x_list[1]# 将y1,y2,y3,y4排序因为已经验证了两个框相交所以y3-y2就是交集的宽y_list sorted([y1, y2, y3, y4])y_inter y_list[2] - y_list[1]# 计算交集的面积inter x_inter * y_interreturn interdef get_iou(box1, box2):计算交并比 (A n B)/(A B - A n B)Args:box1: 第一个框box2: 第二个框Returns: # 返回交并比的值box1_area box1[2] * box1[3] # 计算第一个框的面积box2_area box2[2] * box2[3] # 计算第二个框的面积inter_area get_inter(box1, box2)union box1_area box2_area - inter_area # (A n B)/(A B - A n B)iou inter_area / unionreturn ioudef nms(pred, conf_thres, iou_thres):非极大值抑制nmsArgs:pred: 模型输出特征图conf_thres: 置信度阈值iou_thres: iou阈值Returns: 输出后的结果box pred[pred[..., 4] conf_thres] # 置信度筛选cls_conf box[..., 5:]cls []for i in range(len(cls_conf)):cls.append(int(np.argmax(cls_conf[i])))total_cls list(set(cls)) # 记录图像内共出现几种物体output_box []# 每个预测类别分开考虑for i in range(len(total_cls)):clss total_cls[i]cls_box []temp box[:, :6]for j in range(len(cls)):# 记录[x,y,w,h,conf(最大类别概率),class]值if cls[j] clss:temp[j][5] clsscls_box.append(temp[j][:6])# cls_box 里面是[x,y,w,h,conf(最大类别概率),class]cls_box np.array(cls_box)sort_cls_box sorted(cls_box, keylambda x: -x[4]) # 将cls_box按置信度从大到小排序# box_conf_sort np.argsort(-box_conf)# 得到置信度最大的预测框max_conf_box sort_cls_box[0]output_box.append(max_conf_box)sort_cls_box np.delete(sort_cls_box, 0, 0)# 对除max_conf_box外其他的框进行非极大值抑制while len(sort_cls_box) 0:# 得到当前最大的框max_conf_box output_box[-1]del_index []for j in range(len(sort_cls_box)):current_box sort_cls_box[j]iou get_iou(max_conf_box, current_box)if iou iou_thres:# 筛选出与当前最大框Iou大于阈值的框的索引del_index.append(j)# 删除这些索引sort_cls_box np.delete(sort_cls_box, del_index, 0)if len(sort_cls_box) 0:# 我认为这里需要将clas_box先按置信度排序 才能每次取第一个output_box.append(sort_cls_box[0])sort_cls_box np.delete(sort_cls_box, 0, 0)return output_boxdef cod_trf(result, pre, after):因为预测框是在经过letterbox后的图像上做预测所以需要将预测框的坐标映射回原图像上Args:result: [x,y,w,h,conf(最大类别概率),class]pre: 原尺寸图像after: 经过letterbox处理后的图像Returns: 坐标变换后的结果,res np.array(result)x, y, w, h, conf, cls res.transpose((1, 0))x1, y1, x2, y2 xywh2xyxy(x, y, w, h) # 左上角点和右下角的点h_pre, w_pre, _ pre.shapeh_after, w_after, _ after.shapescale max(w_pre / w_after, h_pre / h_after) # 缩放比例h_pre, w_pre h_pre / scale, w_pre / scale # 计算原图在等比例缩放后的尺寸x_move, y_move abs(w_pre - w_after) // 2, abs(h_pre - h_after) // 2 # 计算平移的量ret_x1, ret_x2 (x1 - x_move) * scale, (x2 - x_move) * scaleret_y1, ret_y2 (y1 - y_move) * scale, (y2 - y_move) * scaleret np.array([ret_x1, ret_y1, ret_x2, ret_y2, conf, cls]).transpose((1, 0))return retdef draw(res, image, cls):将预测框绘制在image上Args:res: 预测框数据image: 原图cls: 类别列表类似[apple, banana, people] 可以自己设计或者通过数据集的yaml文件获取Returns:for r in res:# 画框image cv2.rectangle(image, (int(r[0]), int(r[1])), (int(r[2]), int(r[3])), (255, 0, 0), 1)# 表明类别text {}:{}.format(cls[int(r[5])], round(float(r[4]), 2))h, w int(r[3]) - int(r[1]), int(r[2]) - int(r[0]) # 计算预测框的长宽font_size min(h / 640, w / 640) * 3 # 计算字体大小随框大小调整image cv2.putText(image, text, (max(10, int(r[0])), max(20, int(r[1]))), cv2.FONT_HERSHEY_COMPLEX,max(font_size, 0.3), (0, 0, 255), 1) # max()为了确保字体不过界return imagedef display_fps(frame, start_time):global global_fpsend_time time.time()elapsed_time end_time - start_timeglobal_fps 1 / elapsed_time# 在图像上显示帧率cv2.putText(frame, fFPS: {global_fps:.2f}, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, cv2.LINE_AA)global_fps 0.0if __name__ __main__:cap cv2.VideoCapture(0)sess rt.InferenceSession(./best.onnx)cv2.namedWindow(Video Stream, cv2.WINDOW_NORMAL)names [person, bicycle, car, motorcycle, airplane, bus, train, truck, boat, traffic light,fire hydrant, stop sign, parking meter, bench, bird, cat, dog, horse, sheep, cow,elephant, bear, zebra, giraffe, backpack, umbrella, handbag, tie, suitcase, frisbee,skis, snowboard, sports ball, kite, baseball bat, baseball glove, skateboard, surfboard,tennis racket, bottle, wine glass, cup, fork, knife, spoon, bowl, banana, apple,sandwich, orange, broccoli, carrot, hot dog, pizza, donut, cake, chair, couch,potted plant, bed, dining table, toilet, tv, laptop, mouse, remote, keyboard,cell phone, microwave, oven, toaster, sink, refrigerator, book, clock, vase, scissors,teddy bear, hair drier, toothbrush]def inference_task(frame):class_list list(names)std_h, std_w 640, 640img_after resize_image(frame, (std_w, std_h), True)data img2input(img_after)input_name sess.get_inputs()[0].namelabel_name sess.get_outputs()[0].namepred sess.run([label_name], {input_name: data})[0]pred std_output(pred)result nms(pred, 0.6, 0.4)result cod_trf(result, frame, img_after)image draw(result, frame, class_list)return imagewith concurrent.futures.ThreadPoolExecutor(max_workers20) as executor:while True:start_time time.time()# 读取一帧ret, frame cap.read()if not ret:print(无法读取帧)break# 提交任务并获取 Future 对象future executor.submit(inference_task, frame)display_fps(frame, start_time)# 获取结果try:image future.result()# 显示窗口cv2.imshow(Video Stream, image)cv2.waitKey(1)except Exception as e:cv2.imshow(Video Stream, frame)cv2.waitKey(1)# 释放资源cap.release()cv2.destroyAllWindows()