当前位置: 首页 > news >正文

app与网站的关系站长工具网站查询

app与网站的关系,站长工具网站查询,抚州市住房和城乡建设局网站,互联网营销师考试题库参考#xff1a;http://www.cnblogs.com/skywang12345/p/3496609.html 概要 前面一章#xff0c;我们学习了“公平锁”获取锁的详细流程#xff1b;这里#xff0c;我们再来看看“公平锁”释放锁的过程。内容包括#xff1a; 参考代码 释放公平锁(基于JDK1.7.0_40) “公平…参考http://www.cnblogs.com/skywang12345/p/3496609.html 概要 前面一章我们学习了“公平锁”获取锁的详细流程这里我们再来看看“公平锁”释放锁的过程。内容包括 参考代码 释放公平锁(基于JDK1.7.0_40) “公平锁”的获取过程请参考“Java多线程系列--“JUC锁”03之 公平锁(一)”锁的使用示例请参考“Java多线程系列--“JUC锁”02之 互斥锁ReentrantLock”。 注意 (01) 这里是以“公平锁”来进行说明。 (02) 关于本章的术语如“AQS”“CAS函数”“CLH队列”“公平锁”“非公平锁”“独占锁”“共享锁”等内容请参考Java多线程系列--“JUC锁”03之 公平锁(一)的基本概念。 转载请注明出处http://www.cnblogs.com/skywang12345/p/3496609.html  参考代码 下面给出Java1.7.0_40版本中ReentrantLock和AQS的源码仅供参考 ReentranLock.java 1 /*2 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14 *15 *16 *17 *18 *19 *20 *21 *22 *23 */24 25 /*26 *27 *28 *29 *30 *31 * Written by Doug Lea with assistance from members of JCP JSR-16632 * Expert Group and released to the public domain, as explained at33 * http://creativecommons.org/publicdomain/zero/1.0/34 */35 36 package java.util.concurrent.locks;37 import java.util.*;38 import java.util.concurrent.*;39 import java.util.concurrent.atomic.*;40 41 /**42 * A reentrant mutual exclusion {link Lock} with the same basic43 * behavior and semantics as the implicit monitor lock accessed using44 * {code synchronized} methods and statements, but with extended45 * capabilities.46 *47 * pA {code ReentrantLock} is emowned/em by the thread last48 * successfully locking, but not yet unlocking it. A thread invoking49 * {code lock} will return, successfully acquiring the lock, when50 * the lock is not owned by another thread. The method will return51 * immediately if the current thread already owns the lock. This can52 * be checked using methods {link #isHeldByCurrentThread}, and {link53 * #getHoldCount}.54 *55 * pThe constructor for this class accepts an optional56 * emfairness/em parameter. When set {code true}, under57 * contention, locks favor granting access to the longest-waiting58 * thread. Otherwise this lock does not guarantee any particular59 * access order. Programs using fair locks accessed by many threads60 * may display lower overall throughput (i.e., are slower; often much61 * slower) than those using the default setting, but have smaller62 * variances in times to obtain locks and guarantee lack of63 * starvation. Note however, that fairness of locks does not guarantee64 * fairness of thread scheduling. Thus, one of many threads using a65 * fair lock may obtain it multiple times in succession while other66 * active threads are not progressing and not currently holding the67 * lock.68 * Also note that the untimed {link #tryLock() tryLock} method does not69 * honor the fairness setting. It will succeed if the lock70 * is available even if other threads are waiting.71 *72 * pIt is recommended practice to emalways/em immediately73 * follow a call to {code lock} with a {code try} block, most74 * typically in a before/after construction such as:75 *76 * pre77 * class X {78 * private final ReentrantLock lock new ReentrantLock();79 * // ...80 *81 * public void m() {82 * lock.lock(); // block until condition holds83 * try {84 * // ... method body85 * } finally {86 * lock.unlock()87 * }88 * }89 * }90 * /pre91 *92 * pIn addition to implementing the {link Lock} interface, this93 * class defines methods {code isLocked} and94 * {code getLockQueueLength}, as well as some associated95 * {code protected} access methods that may be useful for96 * instrumentation and monitoring.97 *98 * pSerialization of this class behaves in the same way as built-in99 * locks: a deserialized lock is in the unlocked state, regardless of 100 * its state when serialized. 101 * 102 * pThis lock supports a maximum of 2147483647 recursive locks by 103 * the same thread. Attempts to exceed this limit result in 104 * {link Error} throws from locking methods. 105 * 106 * since 1.5 107 * author Doug Lea 108 */ 109 public class ReentrantLock implements Lock, java.io.Serializable { 110 private static final long serialVersionUID 7373984872572414699L; 111 /** Synchronizer providing all implementation mechanics */ 112 private final Sync sync; 113 114 /** 115 * Base of synchronization control for this lock. Subclassed 116 * into fair and nonfair versions below. Uses AQS state to 117 * represent the number of holds on the lock. 118 */ 119 abstract static class Sync extends AbstractQueuedSynchronizer { 120 private static final long serialVersionUID -5179523762034025860L; 121 122 /** 123 * Performs {link Lock#lock}. The main reason for subclassing 124 * is to allow fast path for nonfair version. 125 */ 126 abstract void lock(); 127 128 /** 129 * Performs non-fair tryLock. tryAcquire is 130 * implemented in subclasses, but both need nonfair 131 * try for trylock method. 132 */ 133 final boolean nonfairTryAcquire(int acquires) { 134 final Thread current Thread.currentThread(); 135 int c getState(); 136 if (c 0) { 137 if (compareAndSetState(0, acquires)) { 138 setExclusiveOwnerThread(current); 139 return true; 140 } 141 } 142 else if (current getExclusiveOwnerThread()) { 143 int nextc c acquires; 144 if (nextc 0) // overflow 145 throw new Error(Maximum lock count exceeded); 146 setState(nextc); 147 return true; 148 } 149 return false; 150 } 151 152 protected final boolean tryRelease(int releases) { 153 int c getState() - releases; 154 if (Thread.currentThread() ! getExclusiveOwnerThread()) 155 throw new IllegalMonitorStateException(); 156 boolean free false; 157 if (c 0) { 158 free true; 159 setExclusiveOwnerThread(null); 160 } 161 setState(c); 162 return free; 163 } 164 165 protected final boolean isHeldExclusively() { 166 // While we must in general read state before owner, 167 // we dont need to do so to check if current thread is owner 168 return getExclusiveOwnerThread() Thread.currentThread(); 169 } 170 171 final ConditionObject newCondition() { 172 return new ConditionObject(); 173 } 174 175 // Methods relayed from outer class 176 177 final Thread getOwner() { 178 return getState() 0 ? null : getExclusiveOwnerThread(); 179 } 180 181 final int getHoldCount() { 182 return isHeldExclusively() ? getState() : 0; 183 } 184 185 final boolean isLocked() { 186 return getState() ! 0; 187 } 188 189 /** 190 * Reconstitutes this lock instance from a stream. 191 * param s the stream 192 */ 193 private void readObject(java.io.ObjectInputStream s) 194 throws java.io.IOException, ClassNotFoundException { 195 s.defaultReadObject(); 196 setState(0); // reset to unlocked state 197 } 198 } 199 200 /** 201 * Sync object for non-fair locks 202 */ 203 static final class NonfairSync extends Sync { 204 private static final long serialVersionUID 7316153563782823691L; 205 206 /** 207 * Performs lock. Try immediate barge, backing up to normal 208 * acquire on failure. 209 */ 210 final void lock() { 211 if (compareAndSetState(0, 1)) 212 setExclusiveOwnerThread(Thread.currentThread()); 213 else 214 acquire(1); 215 } 216 217 protected final boolean tryAcquire(int acquires) { 218 return nonfairTryAcquire(acquires); 219 } 220 } 221 222 /** 223 * Sync object for fair locks 224 */ 225 static final class FairSync extends Sync { 226 private static final long serialVersionUID -3000897897090466540L; 227 228 final void lock() { 229 acquire(1); 230 } 231 232 /** 233 * Fair version of tryAcquire. Dont grant access unless 234 * recursive call or no waiters or is first. 235 */ 236 protected final boolean tryAcquire(int acquires) { 237 final Thread current Thread.currentThread(); 238 int c getState(); 239 if (c 0) { 240 if (!hasQueuedPredecessors() 241 compareAndSetState(0, acquires)) { 242 setExclusiveOwnerThread(current); 243 return true; 244 } 245 } 246 else if (current getExclusiveOwnerThread()) { 247 int nextc c acquires; 248 if (nextc 0) 249 throw new Error(Maximum lock count exceeded); 250 setState(nextc); 251 return true; 252 } 253 return false; 254 } 255 } 256 257 /** 258 * Creates an instance of {code ReentrantLock}. 259 * This is equivalent to using {code ReentrantLock(false)}. 260 */ 261 public ReentrantLock() { 262 sync new NonfairSync(); 263 } 264 265 /** 266 * Creates an instance of {code ReentrantLock} with the 267 * given fairness policy. 268 * 269 * param fair {code true} if this lock should use a fair ordering policy 270 */ 271 public ReentrantLock(boolean fair) { 272 sync fair ? new FairSync() : new NonfairSync(); 273 } 274 275 /** 276 * Acquires the lock. 277 * 278 * pAcquires the lock if it is not held by another thread and returns 279 * immediately, setting the lock hold count to one. 280 * 281 * pIf the current thread already holds the lock then the hold 282 * count is incremented by one and the method returns immediately. 283 * 284 * pIf the lock is held by another thread then the 285 * current thread becomes disabled for thread scheduling 286 * purposes and lies dormant until the lock has been acquired, 287 * at which time the lock hold count is set to one. 288 */ 289 public void lock() { 290 sync.lock(); 291 } 292 293 /** 294 * Acquires the lock unless the current thread is 295 * {linkplain Thread#interrupt interrupted}. 296 * 297 * pAcquires the lock if it is not held by another thread and returns 298 * immediately, setting the lock hold count to one. 299 * 300 * pIf the current thread already holds this lock then the hold count 301 * is incremented by one and the method returns immediately. 302 * 303 * pIf the lock is held by another thread then the 304 * current thread becomes disabled for thread scheduling 305 * purposes and lies dormant until one of two things happens: 306 * 307 * ul 308 * 309 * liThe lock is acquired by the current thread; or 310 * 311 * liSome other thread {linkplain Thread#interrupt interrupts} the 312 * current thread. 313 * 314 * /ul 315 * 316 * pIf the lock is acquired by the current thread then the lock hold 317 * count is set to one. 318 * 319 * pIf the current thread: 320 * 321 * ul 322 * 323 * lihas its interrupted status set on entry to this method; or 324 * 325 * liis {linkplain Thread#interrupt interrupted} while acquiring 326 * the lock, 327 * 328 * /ul 329 * 330 * then {link InterruptedException} is thrown and the current threads 331 * interrupted status is cleared. 332 * 333 * pIn this implementation, as this method is an explicit 334 * interruption point, preference is given to responding to the 335 * interrupt over normal or reentrant acquisition of the lock. 336 * 337 * throws InterruptedException if the current thread is interrupted 338 */ 339 public void lockInterruptibly() throws InterruptedException { 340 sync.acquireInterruptibly(1); 341 } 342 343 /** 344 * Acquires the lock only if it is not held by another thread at the time 345 * of invocation. 346 * 347 * pAcquires the lock if it is not held by another thread and 348 * returns immediately with the value {code true}, setting the 349 * lock hold count to one. Even when this lock has been set to use a 350 * fair ordering policy, a call to {code tryLock()} emwill/em 351 * immediately acquire the lock if it is available, whether or not 352 * other threads are currently waiting for the lock. 353 * This quot;bargingquot; behavior can be useful in certain 354 * circumstances, even though it breaks fairness. If you want to honor 355 * the fairness setting for this lock, then use 356 * {link #tryLock(long, TimeUnit) tryLock(0, TimeUnit.SECONDS) } 357 * which is almost equivalent (it also detects interruption). 358 * 359 * p If the current thread already holds this lock then the hold 360 * count is incremented by one and the method returns {code true}. 361 * 362 * pIf the lock is held by another thread then this method will return 363 * immediately with the value {code false}. 364 * 365 * return {code true} if the lock was free and was acquired by the 366 * current thread, or the lock was already held by the current 367 * thread; and {code false} otherwise 368 */ 369 public boolean tryLock() { 370 return sync.nonfairTryAcquire(1); 371 } 372 373 /** 374 * Acquires the lock if it is not held by another thread within the given 375 * waiting time and the current thread has not been 376 * {linkplain Thread#interrupt interrupted}. 377 * 378 * pAcquires the lock if it is not held by another thread and returns 379 * immediately with the value {code true}, setting the lock hold count 380 * to one. If this lock has been set to use a fair ordering policy then 381 * an available lock emwill not/em be acquired if any other threads 382 * are waiting for the lock. This is in contrast to the {link #tryLock()} 383 * method. If you want a timed {code tryLock} that does permit barging on 384 * a fair lock then combine the timed and un-timed forms together: 385 * 386 * preif (lock.tryLock() || lock.tryLock(timeout, unit) ) { ... } 387 * /pre 388 * 389 * pIf the current thread 390 * already holds this lock then the hold count is incremented by one and 391 * the method returns {code true}. 392 * 393 * pIf the lock is held by another thread then the 394 * current thread becomes disabled for thread scheduling 395 * purposes and lies dormant until one of three things happens: 396 * 397 * ul 398 * 399 * liThe lock is acquired by the current thread; or 400 * 401 * liSome other thread {linkplain Thread#interrupt interrupts} 402 * the current thread; or 403 * 404 * liThe specified waiting time elapses 405 * 406 * /ul 407 * 408 * pIf the lock is acquired then the value {code true} is returned and 409 * the lock hold count is set to one. 410 * 411 * pIf the current thread: 412 * 413 * ul 414 * 415 * lihas its interrupted status set on entry to this method; or 416 * 417 * liis {linkplain Thread#interrupt interrupted} while 418 * acquiring the lock, 419 * 420 * /ul 421 * then {link InterruptedException} is thrown and the current threads 422 * interrupted status is cleared. 423 * 424 * pIf the specified waiting time elapses then the value {code false} 425 * is returned. If the time is less than or equal to zero, the method 426 * will not wait at all. 427 * 428 * pIn this implementation, as this method is an explicit 429 * interruption point, preference is given to responding to the 430 * interrupt over normal or reentrant acquisition of the lock, and 431 * over reporting the elapse of the waiting time. 432 * 433 * param timeout the time to wait for the lock 434 * param unit the time unit of the timeout argument 435 * return {code true} if the lock was free and was acquired by the 436 * current thread, or the lock was already held by the current 437 * thread; and {code false} if the waiting time elapsed before 438 * the lock could be acquired 439 * throws InterruptedException if the current thread is interrupted 440 * throws NullPointerException if the time unit is null 441 * 442 */ 443 public boolean tryLock(long timeout, TimeUnit unit) 444 throws InterruptedException { 445 return sync.tryAcquireNanos(1, unit.toNanos(timeout)); 446 } 447 448 /** 449 * Attempts to release this lock. 450 * 451 * pIf the current thread is the holder of this lock then the hold 452 * count is decremented. If the hold count is now zero then the lock 453 * is released. If the current thread is not the holder of this 454 * lock then {link IllegalMonitorStateException} is thrown. 455 * 456 * throws IllegalMonitorStateException if the current thread does not 457 * hold this lock 458 */ 459 public void unlock() { 460 sync.release(1); 461 } 462 463 /** 464 * Returns a {link Condition} instance for use with this 465 * {link Lock} instance. 466 * 467 * pThe returned {link Condition} instance supports the same 468 * usages as do the {link Object} monitor methods ({link 469 * Object#wait() wait}, {link Object#notify notify}, and {link 470 * Object#notifyAll notifyAll}) when used with the built-in 471 * monitor lock. 472 * 473 * ul 474 * 475 * liIf this lock is not held when any of the {link Condition} 476 * {linkplain Condition#await() waiting} or {linkplain 477 * Condition#signal signalling} methods are called, then an {link 478 * IllegalMonitorStateException} is thrown. 479 * 480 * liWhen the condition {linkplain Condition#await() waiting} 481 * methods are called the lock is released and, before they 482 * return, the lock is reacquired and the lock hold count restored 483 * to what it was when the method was called. 484 * 485 * liIf a thread is {linkplain Thread#interrupt interrupted} 486 * while waiting then the wait will terminate, an {link 487 * InterruptedException} will be thrown, and the threads 488 * interrupted status will be cleared. 489 * 490 * li Waiting threads are signalled in FIFO order. 491 * 492 * liThe ordering of lock reacquisition for threads returning 493 * from waiting methods is the same as for threads initially 494 * acquiring the lock, which is in the default case not specified, 495 * but for emfair/em locks favors those threads that have been 496 * waiting the longest. 497 * 498 * /ul 499 * 500 * return the Condition object 501 */ 502 public Condition newCondition() { 503 return sync.newCondition(); 504 } 505 506 /** 507 * Queries the number of holds on this lock by the current thread. 508 * 509 * pA thread has a hold on a lock for each lock action that is not 510 * matched by an unlock action. 511 * 512 * pThe hold count information is typically only used for testing and 513 * debugging purposes. For example, if a certain section of code should 514 * not be entered with the lock already held then we can assert that 515 * fact: 516 * 517 * pre 518 * class X { 519 * ReentrantLock lock new ReentrantLock(); 520 * // ... 521 * public void m() { 522 * assert lock.getHoldCount() 0; 523 * lock.lock(); 524 * try { 525 * // ... method body 526 * } finally { 527 * lock.unlock(); 528 * } 529 * } 530 * } 531 * /pre 532 * 533 * return the number of holds on this lock by the current thread, 534 * or zero if this lock is not held by the current thread 535 */ 536 public int getHoldCount() { 537 return sync.getHoldCount(); 538 } 539 540 /** 541 * Queries if this lock is held by the current thread. 542 * 543 * pAnalogous to the {link Thread#holdsLock} method for built-in 544 * monitor locks, this method is typically used for debugging and 545 * testing. For example, a method that should only be called while 546 * a lock is held can assert that this is the case: 547 * 548 * pre 549 * class X { 550 * ReentrantLock lock new ReentrantLock(); 551 * // ... 552 * 553 * public void m() { 554 * assert lock.isHeldByCurrentThread(); 555 * // ... method body 556 * } 557 * } 558 * /pre 559 * 560 * pIt can also be used to ensure that a reentrant lock is used 561 * in a non-reentrant manner, for example: 562 * 563 * pre 564 * class X { 565 * ReentrantLock lock new ReentrantLock(); 566 * // ... 567 * 568 * public void m() { 569 * assert !lock.isHeldByCurrentThread(); 570 * lock.lock(); 571 * try { 572 * // ... method body 573 * } finally { 574 * lock.unlock(); 575 * } 576 * } 577 * } 578 * /pre 579 * 580 * return {code true} if current thread holds this lock and 581 * {code false} otherwise 582 */ 583 public boolean isHeldByCurrentThread() { 584 return sync.isHeldExclusively(); 585 } 586 587 /** 588 * Queries if this lock is held by any thread. This method is 589 * designed for use in monitoring of the system state, 590 * not for synchronization control. 591 * 592 * return {code true} if any thread holds this lock and 593 * {code false} otherwise 594 */ 595 public boolean isLocked() { 596 return sync.isLocked(); 597 } 598 599 /** 600 * Returns {code true} if this lock has fairness set true. 601 * 602 * return {code true} if this lock has fairness set true 603 */ 604 public final boolean isFair() { 605 return sync instanceof FairSync; 606 } 607 608 /** 609 * Returns the thread that currently owns this lock, or 610 * {code null} if not owned. When this method is called by a 611 * thread that is not the owner, the return value reflects a 612 * best-effort approximation of current lock status. For example, 613 * the owner may be momentarily {code null} even if there are 614 * threads trying to acquire the lock but have not yet done so. 615 * This method is designed to facilitate construction of 616 * subclasses that provide more extensive lock monitoring 617 * facilities. 618 * 619 * return the owner, or {code null} if not owned 620 */ 621 protected Thread getOwner() { 622 return sync.getOwner(); 623 } 624 625 /** 626 * Queries whether any threads are waiting to acquire this lock. Note that 627 * because cancellations may occur at any time, a {code true} 628 * return does not guarantee that any other thread will ever 629 * acquire this lock. This method is designed primarily for use in 630 * monitoring of the system state. 631 * 632 * return {code true} if there may be other threads waiting to 633 * acquire the lock 634 */ 635 public final boolean hasQueuedThreads() { 636 return sync.hasQueuedThreads(); 637 } 638 639 640 /** 641 * Queries whether the given thread is waiting to acquire this 642 * lock. Note that because cancellations may occur at any time, a 643 * {code true} return does not guarantee that this thread 644 * will ever acquire this lock. This method is designed primarily for use 645 * in monitoring of the system state. 646 * 647 * param thread the thread 648 * return {code true} if the given thread is queued waiting for this lock 649 * throws NullPointerException if the thread is null 650 */ 651 public final boolean hasQueuedThread(Thread thread) { 652 return sync.isQueued(thread); 653 } 654 655 656 /** 657 * Returns an estimate of the number of threads waiting to 658 * acquire this lock. The value is only an estimate because the number of 659 * threads may change dynamically while this method traverses 660 * internal data structures. This method is designed for use in 661 * monitoring of the system state, not for synchronization 662 * control. 663 * 664 * return the estimated number of threads waiting for this lock 665 */ 666 public final int getQueueLength() { 667 return sync.getQueueLength(); 668 } 669 670 /** 671 * Returns a collection containing threads that may be waiting to 672 * acquire this lock. Because the actual set of threads may change 673 * dynamically while constructing this result, the returned 674 * collection is only a best-effort estimate. The elements of the 675 * returned collection are in no particular order. This method is 676 * designed to facilitate construction of subclasses that provide 677 * more extensive monitoring facilities. 678 * 679 * return the collection of threads 680 */ 681 protected CollectionThread getQueuedThreads() { 682 return sync.getQueuedThreads(); 683 } 684 685 /** 686 * Queries whether any threads are waiting on the given condition 687 * associated with this lock. Note that because timeouts and 688 * interrupts may occur at any time, a {code true} return does 689 * not guarantee that a future {code signal} will awaken any 690 * threads. This method is designed primarily for use in 691 * monitoring of the system state. 692 * 693 * param condition the condition 694 * return {code true} if there are any waiting threads 695 * throws IllegalMonitorStateException if this lock is not held 696 * throws IllegalArgumentException if the given condition is 697 * not associated with this lock 698 * throws NullPointerException if the condition is null 699 */ 700 public boolean hasWaiters(Condition condition) { 701 if (condition null) 702 throw new NullPointerException(); 703 if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject)) 704 throw new IllegalArgumentException(not owner); 705 return sync.hasWaiters((AbstractQueuedSynchronizer.ConditionObject)condition); 706 } 707 708 /** 709 * Returns an estimate of the number of threads waiting on the 710 * given condition associated with this lock. Note that because 711 * timeouts and interrupts may occur at any time, the estimate 712 * serves only as an upper bound on the actual number of waiters. 713 * This method is designed for use in monitoring of the system 714 * state, not for synchronization control. 715 * 716 * param condition the condition 717 * return the estimated number of waiting threads 718 * throws IllegalMonitorStateException if this lock is not held 719 * throws IllegalArgumentException if the given condition is 720 * not associated with this lock 721 * throws NullPointerException if the condition is null 722 */ 723 public int getWaitQueueLength(Condition condition) { 724 if (condition null) 725 throw new NullPointerException(); 726 if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject)) 727 throw new IllegalArgumentException(not owner); 728 return sync.getWaitQueueLength((AbstractQueuedSynchronizer.ConditionObject)condition); 729 } 730 731 /** 732 * Returns a collection containing those threads that may be 733 * waiting on the given condition associated with this lock. 734 * Because the actual set of threads may change dynamically while 735 * constructing this result, the returned collection is only a 736 * best-effort estimate. The elements of the returned collection 737 * are in no particular order. This method is designed to 738 * facilitate construction of subclasses that provide more 739 * extensive condition monitoring facilities. 740 * 741 * param condition the condition 742 * return the collection of threads 743 * throws IllegalMonitorStateException if this lock is not held 744 * throws IllegalArgumentException if the given condition is 745 * not associated with this lock 746 * throws NullPointerException if the condition is null 747 */ 748 protected CollectionThread getWaitingThreads(Condition condition) { 749 if (condition null) 750 throw new NullPointerException(); 751 if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject)) 752 throw new IllegalArgumentException(not owner); 753 return sync.getWaitingThreads((AbstractQueuedSynchronizer.ConditionObject)condition); 754 } 755 756 /** 757 * Returns a string identifying this lock, as well as its lock state. 758 * The state, in brackets, includes either the String {code Unlocked} 759 * or the String {code Locked by} followed by the 760 * {linkplain Thread#getName name} of the owning thread. 761 * 762 * return a string identifying this lock, as well as its lock state 763 */ 764 public String toString() { 765 Thread o sync.getOwner(); 766 return super.toString() ((o null) ? 767 [Unlocked] : 768 [Locked by thread o.getName() ]); 769 } 770 } AQS(AbstractQueuedSynchronizer.java) 1 /*2 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14 *15 *16 *17 *18 *19 *20 *21 *22 *23 */24 25 /*26 *27 *28 *29 *30 *31 * Written by Doug Lea with assistance from members of JCP JSR-16632 * Expert Group and released to the public domain, as explained at33 * http://creativecommons.org/publicdomain/zero/1.0/34 */35 36 package java.util.concurrent.locks;37 import java.util.*;38 import java.util.concurrent.*;39 import java.util.concurrent.atomic.*;40 import sun.misc.Unsafe;41 42 /**43 * Provides a framework for implementing blocking locks and related44 * synchronizers (semaphores, events, etc) that rely on45 * first-in-first-out (FIFO) wait queues. This class is designed to46 * be a useful basis for most kinds of synchronizers that rely on a47 * single atomic ttint/tt value to represent state. Subclasses48 * must define the protected methods that change this state, and which49 * define what that state means in terms of this object being acquired50 * or released. Given these, the other methods in this class carry51 * out all queuing and blocking mechanics. Subclasses can maintain52 * other state fields, but only the atomically updated ttint/tt53 * value manipulated using methods {link #getState}, {link54 * #setState} and {link #compareAndSetState} is tracked with respect55 * to synchronization.56 *57 * pSubclasses should be defined as non-public internal helper58 * classes that are used to implement the synchronization properties59 * of their enclosing class. Class60 * ttAbstractQueuedSynchronizer/tt does not implement any61 * synchronization interface. Instead it defines methods such as62 * {link #acquireInterruptibly} that can be invoked as63 * appropriate by concrete locks and related synchronizers to64 * implement their public methods.65 *66 * pThis class supports either or both a default emexclusive/em67 * mode and a emshared/em mode. When acquired in exclusive mode,68 * attempted acquires by other threads cannot succeed. Shared mode69 * acquires by multiple threads may (but need not) succeed. This class70 * does not quot;understandquot; these differences except in the71 * mechanical sense that when a shared mode acquire succeeds, the next72 * waiting thread (if one exists) must also determine whether it can73 * acquire as well. Threads waiting in the different modes share the74 * same FIFO queue. Usually, implementation subclasses support only75 * one of these modes, but both can come into play for example in a76 * {link ReadWriteLock}. Subclasses that support only exclusive or77 * only shared modes need not define the methods supporting the unused mode.78 *79 * pThis class defines a nested {link ConditionObject} class that80 * can be used as a {link Condition} implementation by subclasses81 * supporting exclusive mode for which method {link82 * #isHeldExclusively} reports whether synchronization is exclusively83 * held with respect to the current thread, method {link #release}84 * invoked with the current {link #getState} value fully releases85 * this object, and {link #acquire}, given this saved state value,86 * eventually restores this object to its previous acquired state. No87 * ttAbstractQueuedSynchronizer/tt method otherwise creates such a88 * condition, so if this constraint cannot be met, do not use it. The89 * behavior of {link ConditionObject} depends of course on the90 * semantics of its synchronizer implementation.91 *92 * pThis class provides inspection, instrumentation, and monitoring93 * methods for the internal queue, as well as similar methods for94 * condition objects. These can be exported as desired into classes95 * using an ttAbstractQueuedSynchronizer/tt for their96 * synchronization mechanics.97 *98 * pSerialization of this class stores only the underlying atomic99 * integer maintaining state, so deserialized objects have empty100 * thread queues. Typical subclasses requiring serializability will101 * define a ttreadObject/tt method that restores this to a known102 * initial state upon deserialization.103 *104 * h3Usage/h3105 *106 * pTo use this class as the basis of a synchronizer, redefine the107 * following methods, as applicable, by inspecting and/or modifying108 * the synchronization state using {link #getState}, {link109 * #setState} and/or {link #compareAndSetState}:110 *111 * ul112 * li {link #tryAcquire}113 * li {link #tryRelease}114 * li {link #tryAcquireShared}115 * li {link #tryReleaseShared}116 * li {link #isHeldExclusively}117 */ul118 *119 * Each of these methods by default throws {link120 * UnsupportedOperationException}. Implementations of these methods121 * must be internally thread-safe, and should in general be short and122 * not block. Defining these methods is the emonly/em supported123 * means of using this class. All other methods are declared124 * ttfinal/tt because they cannot be independently varied.125 *126 * pYou may also find the inherited methods from {link127 * AbstractOwnableSynchronizer} useful to keep track of the thread128 * owning an exclusive synchronizer. You are encouraged to use them129 * -- this enables monitoring and diagnostic tools to assist users in130 * determining which threads hold locks.131 *132 * pEven though this class is based on an internal FIFO queue, it133 * does not automatically enforce FIFO acquisition policies. The core134 * of exclusive synchronization takes the form:135 *136 * pre137 * Acquire:138 * while (!tryAcquire(arg)) {139 * emenqueue thread if it is not already queued/em;140 * empossibly block current thread/em;141 * }142 *143 * Release:144 * if (tryRelease(arg))145 * emunblock the first queued thread/em;146 * /pre147 *148 * (Shared mode is similar but may involve cascading signals.)149 *150 * pa namebargingBecause checks in acquire are invoked before151 * enqueuing, a newly acquiring thread may embarge/em ahead of152 * others that are blocked and queued. However, you can, if desired,153 * define tttryAcquire/tt and/or tttryAcquireShared/tt to154 * disable barging by internally invoking one or more of the inspection155 * methods, thereby providing a emfair/em FIFO acquisition order.156 * In particular, most fair synchronizers can define tttryAcquire/tt157 * to return ttfalse/tt if {link #hasQueuedPredecessors} (a method158 * specifically designed to be used by fair synchronizers) returns159 * tttrue/tt. Other variations are possible.160 *161 * pThroughput and scalability are generally highest for the162 * default barging (also known as emgreedy/em,163 * emrenouncement/em, and emconvoy-avoidance/em) strategy.164 * While this is not guaranteed to be fair or starvation-free, earlier165 * queued threads are allowed to recontend before later queued166 * threads, and each recontention has an unbiased chance to succeed167 * against incoming threads. Also, while acquires do not168 * quot;spinquot; in the usual sense, they may perform multiple169 * invocations of tttryAcquire/tt interspersed with other170 * computations before blocking. This gives most of the benefits of171 * spins when exclusive synchronization is only briefly held, without172 * most of the liabilities when it isnt. If so desired, you can173 * augment this by preceding calls to acquire methods with174 * fast-path checks, possibly prechecking {link #hasContended}175 * and/or {link #hasQueuedThreads} to only do so if the synchronizer176 * is likely not to be contended.177 *178 * pThis class provides an efficient and scalable basis for179 * synchronization in part by specializing its range of use to180 * synchronizers that can rely on ttint/tt state, acquire, and181 * release parameters, and an internal FIFO wait queue. When this does182 * not suffice, you can build synchronizers from a lower level using183 * {link java.util.concurrent.atomic atomic} classes, your own custom184 * {link java.util.Queue} classes, and {link LockSupport} blocking185 * support.186 *187 * h3Usage Examples/h3188 *189 * pHere is a non-reentrant mutual exclusion lock class that uses190 * the value zero to represent the unlocked state, and one to191 * represent the locked state. While a non-reentrant lock192 * does not strictly require recording of the current owner193 * thread, this class does so anyway to make usage easier to monitor.194 * It also supports conditions and exposes195 * one of the instrumentation methods:196 *197 * pre198 * class Mutex implements Lock, java.io.Serializable {199 *200 * // Our internal helper class201 * private static class Sync extends AbstractQueuedSynchronizer {202 * // Report whether in locked state203 * protected boolean isHeldExclusively() {204 * return getState() 1;205 * }206 *207 * // Acquire the lock if state is zero208 * public boolean tryAcquire(int acquires) {209 * assert acquires 1; // Otherwise unused210 * if (compareAndSetState(0, 1)) {211 * setExclusiveOwnerThread(Thread.currentThread());212 * return true;213 * }214 * return false;215 * }216 *217 * // Release the lock by setting state to zero218 * protected boolean tryRelease(int releases) {219 * assert releases 1; // Otherwise unused220 * if (getState() 0) throw new IllegalMonitorStateException();221 * setExclusiveOwnerThread(null);222 * setState(0);223 * return true;224 * }225 *226 * // Provide a Condition227 * Condition newCondition() { return new ConditionObject(); }228 *229 * // Deserialize properly230 * private void readObject(ObjectInputStream s)231 * throws IOException, ClassNotFoundException {232 * s.defaultReadObject();233 * setState(0); // reset to unlocked state234 * }235 * }236 *237 * // The sync object does all the hard work. We just forward to it.238 * private final Sync sync new Sync();239 *240 * public void lock() { sync.acquire(1); }241 * public boolean tryLock() { return sync.tryAcquire(1); }242 * public void unlock() { sync.release(1); }243 * public Condition newCondition() { return sync.newCondition(); }244 * public boolean isLocked() { return sync.isHeldExclusively(); }245 * public boolean hasQueuedThreads() { return sync.hasQueuedThreads(); }246 * public void lockInterruptibly() throws InterruptedException {247 * sync.acquireInterruptibly(1);248 * }249 * public boolean tryLock(long timeout, TimeUnit unit)250 * throws InterruptedException {251 * return sync.tryAcquireNanos(1, unit.toNanos(timeout));252 * }253 * }254 * /pre255 *256 * pHere is a latch class that is like a {link CountDownLatch}257 * except that it only requires a single ttsignal/tt to258 * fire. Because a latch is non-exclusive, it uses the ttshared/tt259 * acquire and release methods.260 *261 * pre262 * class BooleanLatch {263 *264 * private static class Sync extends AbstractQueuedSynchronizer {265 * boolean isSignalled() { return getState() ! 0; }266 *267 * protected int tryAcquireShared(int ignore) {268 * return isSignalled() ? 1 : -1;269 * }270 *271 * protected boolean tryReleaseShared(int ignore) {272 * setState(1);273 * return true;274 * }275 * }276 *277 * private final Sync sync new Sync();278 * public boolean isSignalled() { return sync.isSignalled(); }279 * public void signal() { sync.releaseShared(1); }280 * public void await() throws InterruptedException {281 * sync.acquireSharedInterruptibly(1);282 * }283 * }284 * /pre285 *286 * since 1.5287 * author Doug Lea288 */289 public abstract class AbstractQueuedSynchronizer290 extends AbstractOwnableSynchronizer291 implements java.io.Serializable {292 293 private static final long serialVersionUID 7373984972572414691L;294 295 /**296 * Creates a new ttAbstractQueuedSynchronizer/tt instance297 * with initial synchronization state of zero.298 */299 protected AbstractQueuedSynchronizer() { }300 301 /**302 * Wait queue node class.303 *304 * pThe wait queue is a variant of a CLH (Craig, Landin, and305 * Hagersten) lock queue. CLH locks are normally used for306 * spinlocks. We instead use them for blocking synchronizers, but307 * use the same basic tactic of holding some of the control308 * information about a thread in the predecessor of its node. A309 * status field in each node keeps track of whether a thread310 * should block. A node is signalled when its predecessor311 * releases. Each node of the queue otherwise serves as a312 * specific-notification-style monitor holding a single waiting313 * thread. The status field does NOT control whether threads are314 * granted locks etc though. A thread may try to acquire if it is315 * first in the queue. But being first does not guarantee success;316 * it only gives the right to contend. So the currently released317 * contender thread may need to rewait.318 *319 * pTo enqueue into a CLH lock, you atomically splice it in as new320 * tail. To dequeue, you just set the head field.321 * pre322 * ------ prev ----- -----323 * head | | ---- | | ---- | | tail324 * ------ ----- -----325 * /pre326 *327 * pInsertion into a CLH queue requires only a single atomic328 * operation on tail, so there is a simple atomic point of329 * demarcation from unqueued to queued. Similarly, dequeing330 * involves only updating the head. However, it takes a bit331 * more work for nodes to determine who their successors are,332 * in part to deal with possible cancellation due to timeouts333 * and interrupts.334 *335 * pThe prev links (not used in original CLH locks), are mainly336 * needed to handle cancellation. If a node is cancelled, its337 * successor is (normally) relinked to a non-cancelled338 * predecessor. For explanation of similar mechanics in the case339 * of spin locks, see the papers by Scott and Scherer at340 * http://www.cs.rochester.edu/u/scott/synchronization/341 *342 * pWe also use next links to implement blocking mechanics.343 * The thread id for each node is kept in its own node, so a344 * predecessor signals the next node to wake up by traversing345 * next link to determine which thread it is. Determination of346 * successor must avoid races with newly queued nodes to set347 * the next fields of their predecessors. This is solved348 * when necessary by checking backwards from the atomically349 * updated tail when a nodes successor appears to be null.350 * (Or, said differently, the next-links are an optimization351 * so that we dont usually need a backward scan.)352 *353 * pCancellation introduces some conservatism to the basic354 * algorithms. Since we must poll for cancellation of other355 * nodes, we can miss noticing whether a cancelled node is356 * ahead or behind us. This is dealt with by always unparking357 * successors upon cancellation, allowing them to stabilize on358 * a new predecessor, unless we can identify an uncancelled359 * predecessor who will carry this responsibility.360 *361 * pCLH queues need a dummy header node to get started. But362 * we dont create them on construction, because it would be wasted363 * effort if there is never contention. Instead, the node364 * is constructed and head and tail pointers are set upon first365 * contention.366 *367 * pThreads waiting on Conditions use the same nodes, but368 * use an additional link. Conditions only need to link nodes369 * in simple (non-concurrent) linked queues because they are370 * only accessed when exclusively held. Upon await, a node is371 * inserted into a condition queue. Upon signal, the node is372 * transferred to the main queue. A special value of status373 * field is used to mark which queue a node is on.374 *375 * pThanks go to Dave Dice, Mark Moir, Victor Luchangco, Bill376 * Scherer and Michael Scott, along with members of JSR-166377 * expert group, for helpful ideas, discussions, and critiques378 * on the design of this class.379 */380 static final class Node {381 /** Marker to indicate a node is waiting in shared mode */382 static final Node SHARED new Node();383 /** Marker to indicate a node is waiting in exclusive mode */384 static final Node EXCLUSIVE null;385 386 /** waitStatus value to indicate thread has cancelled */387 static final int CANCELLED 1;388 /** waitStatus value to indicate successors thread needs unparking */389 static final int SIGNAL -1;390 /** waitStatus value to indicate thread is waiting on condition */391 static final int CONDITION -2;392 /**393 * waitStatus value to indicate the next acquireShared should394 * unconditionally propagate395 */396 static final int PROPAGATE -3;397 398 /**399 * Status field, taking on only the values:400 * SIGNAL: The successor of this node is (or will soon be)401 * blocked (via park), so the current node must402 * unpark its successor when it releases or403 * cancels. To avoid races, acquire methods must404 * first indicate they need a signal,405 * then retry the atomic acquire, and then,406 * on failure, block.407 * CANCELLED: This node is cancelled due to timeout or interrupt.408 * Nodes never leave this state. In particular,409 * a thread with cancelled node never again blocks.410 * CONDITION: This node is currently on a condition queue.411 * It will not be used as a sync queue node412 * until transferred, at which time the status413 * will be set to 0. (Use of this value here has414 * nothing to do with the other uses of the415 * field, but simplifies mechanics.)416 * PROPAGATE: A releaseShared should be propagated to other417 * nodes. This is set (for head node only) in418 * doReleaseShared to ensure propagation419 * continues, even if other operations have420 * since intervened.421 * 0: None of the above422 *423 * The values are arranged numerically to simplify use.424 * Non-negative values mean that a node doesnt need to425 * signal. So, most code doesnt need to check for particular426 * values, just for sign.427 *428 * The field is initialized to 0 for normal sync nodes, and429 * CONDITION for condition nodes. It is modified using CAS430 * (or when possible, unconditional volatile writes).431 */432 volatile int waitStatus;433 434 /**435 * Link to predecessor node that current node/thread relies on436 * for checking waitStatus. Assigned during enqueing, and nulled437 * out (for sake of GC) only upon dequeuing. Also, upon438 * cancellation of a predecessor, we short-circuit while439 * finding a non-cancelled one, which will always exist440 * because the head node is never cancelled: A node becomes441 * head only as a result of successful acquire. A442 * cancelled thread never succeeds in acquiring, and a thread only443 * cancels itself, not any other node.444 */445 volatile Node prev;446 447 /**448 * Link to the successor node that the current node/thread449 * unparks upon release. Assigned during enqueuing, adjusted450 * when bypassing cancelled predecessors, and nulled out (for451 * sake of GC) when dequeued. The enq operation does not452 * assign next field of a predecessor until after attachment,453 * so seeing a null next field does not necessarily mean that454 * node is at end of queue. However, if a next field appears455 * to be null, we can scan prevs from the tail to456 * double-check. The next field of cancelled nodes is set to457 * point to the node itself instead of null, to make life458 * easier for isOnSyncQueue.459 */460 volatile Node next;461 462 /**463 * The thread that enqueued this node. Initialized on464 * construction and nulled out after use.465 */466 volatile Thread thread;467 468 /**469 * Link to next node waiting on condition, or the special470 * value SHARED. Because condition queues are accessed only471 * when holding in exclusive mode, we just need a simple472 * linked queue to hold nodes while they are waiting on473 * conditions. They are then transferred to the queue to474 * re-acquire. And because conditions can only be exclusive,475 * we save a field by using special value to indicate shared476 * mode.477 */478 Node nextWaiter;479 480 /**481 * Returns true if node is waiting in shared mode482 */483 final boolean isShared() {484 return nextWaiter SHARED;485 }486 487 /**488 * Returns previous node, or throws NullPointerException if null.489 * Use when predecessor cannot be null. The null check could490 * be elided, but is present to help the VM.491 *492 * return the predecessor of this node493 */494 final Node predecessor() throws NullPointerException {495 Node p prev;496 if (p null)497 throw new NullPointerException();498 else499 return p;500 }501 502 Node() { // Used to establish initial head or SHARED marker503 }504 505 Node(Thread thread, Node mode) { // Used by addWaiter506 this.nextWaiter mode;507 this.thread thread;508 }509 510 Node(Thread thread, int waitStatus) { // Used by Condition511 this.waitStatus waitStatus;512 this.thread thread;513 }514 }515 516 /**517 * Head of the wait queue, lazily initialized. Except for518 * initialization, it is modified only via method setHead. Note:519 * If head exists, its waitStatus is guaranteed not to be520 * CANCELLED.521 */522 private transient volatile Node head;523 524 /**525 * Tail of the wait queue, lazily initialized. Modified only via526 * method enq to add new wait node.527 */528 private transient volatile Node tail;529 530 /**531 * The synchronization state.532 */533 private volatile int state;534 535 /**536 * Returns the current value of synchronization state.537 * This operation has memory semantics of a ttvolatile/tt read.538 * return current state value539 */540 protected final int getState() {541 return state;542 }543 544 /**545 * Sets the value of synchronization state.546 * This operation has memory semantics of a ttvolatile/tt write.547 * param newState the new state value548 */549 protected final void setState(int newState) {550 state newState;551 }552 553 /**554 * Atomically sets synchronization state to the given updated555 * value if the current state value equals the expected value.556 * This operation has memory semantics of a ttvolatile/tt read557 * and write.558 *559 * param expect the expected value560 * param update the new value561 * return true if successful. False return indicates that the actual562 * value was not equal to the expected value.563 */564 protected final boolean compareAndSetState(int expect, int update) {565 // See below for intrinsics setup to support this566 return unsafe.compareAndSwapInt(this, stateOffset, expect, update);567 }568 569 // Queuing utilities570 571 /**572 * The number of nanoseconds for which it is faster to spin573 * rather than to use timed park. A rough estimate suffices574 * to improve responsiveness with very short timeouts.575 */576 static final long spinForTimeoutThreshold 1000L;577 578 /**579 * Inserts node into queue, initializing if necessary. See picture above.580 * param node the node to insert581 * return nodes predecessor582 */583 private Node enq(final Node node) {584 for (;;) {585 Node t tail;586 if (t null) { // Must initialize587 if (compareAndSetHead(new Node()))588 tail head;589 } else {590 node.prev t;591 if (compareAndSetTail(t, node)) {592 t.next node;593 return t;594 }595 }596 }597 }598 599 /**600 * Creates and enqueues node for current thread and given mode.601 *602 * param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared603 * return the new node604 */605 private Node addWaiter(Node mode) {606 Node node new Node(Thread.currentThread(), mode);607 // Try the fast path of enq; backup to full enq on failure608 Node pred tail;609 if (pred ! null) {610 node.prev pred;611 if (compareAndSetTail(pred, node)) {612 pred.next node;613 return node;614 }615 }616 enq(node);617 return node;618 }619 620 /**621 * Sets head of queue to be node, thus dequeuing. Called only by622 * acquire methods. Also nulls out unused fields for sake of GC623 * and to suppress unnecessary signals and traversals.624 *625 * param node the node626 */627 private void setHead(Node node) {628 head node;629 node.thread null;630 node.prev null;631 }632 633 /**634 * Wakes up nodes successor, if one exists.635 *636 * param node the node637 */638 private void unparkSuccessor(Node node) {639 /*640 * If status is negative (i.e., possibly needing signal) try641 * to clear in anticipation of signalling. It is OK if this642 * fails or if status is changed by waiting thread.643 */644 int ws node.waitStatus;645 if (ws 0)646 compareAndSetWaitStatus(node, ws, 0);647 648 /*649 * Thread to unpark is held in successor, which is normally650 * just the next node. But if cancelled or apparently null,651 * traverse backwards from tail to find the actual652 * non-cancelled successor.653 */654 Node s node.next;655 if (s null || s.waitStatus 0) {656 s null;657 for (Node t tail; t ! null t ! node; t t.prev)658 if (t.waitStatus 0)659 s t;660 }661 if (s ! null)662 LockSupport.unpark(s.thread);663 }664 665 /**666 * Release action for shared mode -- signal successor and ensure667 * propagation. (Note: For exclusive mode, release just amounts668 * to calling unparkSuccessor of head if it needs signal.)669 */670 private void doReleaseShared() {671 /*672 * Ensure that a release propagates, even if there are other673 * in-progress acquires/releases. This proceeds in the usual674 * way of trying to unparkSuccessor of head if it needs675 * signal. But if it does not, status is set to PROPAGATE to676 * ensure that upon release, propagation continues.677 * Additionally, we must loop in case a new node is added678 * while we are doing this. Also, unlike other uses of679 * unparkSuccessor, we need to know if CAS to reset status680 * fails, if so rechecking.681 */682 for (;;) {683 Node h head;684 if (h ! null h ! tail) {685 int ws h.waitStatus;686 if (ws Node.SIGNAL) {687 if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))688 continue; // loop to recheck cases689 unparkSuccessor(h);690 }691 else if (ws 0 692 !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))693 continue; // loop on failed CAS694 }695 if (h head) // loop if head changed696 break;697 }698 }699 700 /**701 * Sets head of queue, and checks if successor may be waiting702 * in shared mode, if so propagating if either propagate 0 or703 * PROPAGATE status was set.704 *705 * param node the node706 * param propagate the return value from a tryAcquireShared707 */708 private void setHeadAndPropagate(Node node, int propagate) {709 Node h head; // Record old head for check below710 setHead(node);711 /*712 * Try to signal next queued node if:713 * Propagation was indicated by caller,714 * or was recorded (as h.waitStatus) by a previous operation715 * (note: this uses sign-check of waitStatus because716 * PROPAGATE status may transition to SIGNAL.)717 * and718 * The next node is waiting in shared mode,719 * or we dont know, because it appears null720 *721 * The conservatism in both of these checks may cause722 * unnecessary wake-ups, but only when there are multiple723 * racing acquires/releases, so most need signals now or soon724 * anyway.725 */726 if (propagate 0 || h null || h.waitStatus 0) {727 Node s node.next;728 if (s null || s.isShared())729 doReleaseShared();730 }731 }732 733 // Utilities for various versions of acquire734 735 /**736 * Cancels an ongoing attempt to acquire.737 *738 * param node the node739 */740 private void cancelAcquire(Node node) {741 // Ignore if node doesnt exist742 if (node null)743 return;744 745 node.thread null;746 747 // Skip cancelled predecessors748 Node pred node.prev;749 while (pred.waitStatus 0)750 node.prev pred pred.prev;751 752 // predNext is the apparent node to unsplice. CASes below will753 // fail if not, in which case, we lost race vs another cancel754 // or signal, so no further action is necessary.755 Node predNext pred.next;756 757 // Can use unconditional write instead of CAS here.758 // After this atomic step, other Nodes can skip past us.759 // Before, we are free of interference from other threads.760 node.waitStatus Node.CANCELLED;761 762 // If we are the tail, remove ourselves.763 if (node tail compareAndSetTail(node, pred)) {764 compareAndSetNext(pred, predNext, null);765 } else {766 // If successor needs signal, try to set preds next-link767 // so it will get one. Otherwise wake it up to propagate.768 int ws;769 if (pred ! head 770 ((ws pred.waitStatus) Node.SIGNAL ||771 (ws 0 compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) 772 pred.thread ! null) {773 Node next node.next;774 if (next ! null next.waitStatus 0)775 compareAndSetNext(pred, predNext, next);776 } else {777 unparkSuccessor(node);778 }779 780 node.next node; // help GC781 }782 }783 784 /**785 * Checks and updates status for a node that failed to acquire.786 * Returns true if thread should block. This is the main signal787 * control in all acquire loops. Requires that pred node.prev788 *789 * param pred nodes predecessor holding status790 * param node the node791 * return {code true} if thread should block792 */793 private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {794 int ws pred.waitStatus;795 if (ws Node.SIGNAL)796 /*797 * This node has already set status asking a release798 * to signal it, so it can safely park.799 */800 return true;801 if (ws 0) {802 /*803 * Predecessor was cancelled. Skip over predecessors and804 * indicate retry.805 */806 do {807 node.prev pred pred.prev;808 } while (pred.waitStatus 0);809 pred.next node;810 } else {811 /*812 * waitStatus must be 0 or PROPAGATE. Indicate that we813 * need a signal, but dont park yet. Caller will need to814 * retry to make sure it cannot acquire before parking.815 */816 compareAndSetWaitStatus(pred, ws, Node.SIGNAL);817 }818 return false;819 }820 821 /**822 * Convenience method to interrupt current thread.823 */824 private static void selfInterrupt() {825 Thread.currentThread().interrupt();826 }827 828 /**829 * Convenience method to park and then check if interrupted830 *831 * return {code true} if interrupted832 */833 private final boolean parkAndCheckInterrupt() {834 LockSupport.park(this);835 return Thread.interrupted();836 }837 838 /*839 * Various flavors of acquire, varying in exclusive/shared and840 * control modes. Each is mostly the same, but annoyingly841 * different. Only a little bit of factoring is possible due to842 * interactions of exception mechanics (including ensuring that we843 * cancel if tryAcquire throws exception) and other control, at844 * least not without hurting performance too much.845 */846 847 /**848 * Acquires in exclusive uninterruptible mode for thread already in849 * queue. Used by condition wait methods as well as acquire.850 *851 * param node the node852 * param arg the acquire argument853 * return {code true} if interrupted while waiting854 */855 final boolean acquireQueued(final Node node, int arg) {856 boolean failed true;857 try {858 boolean interrupted false;859 for (;;) {860 final Node p node.predecessor();861 if (p head tryAcquire(arg)) {862 setHead(node);863 p.next null; // help GC864 failed false;865 return interrupted;866 }867 if (shouldParkAfterFailedAcquire(p, node) 868 parkAndCheckInterrupt())869 interrupted true;870 }871 } finally {872 if (failed)873 cancelAcquire(node);874 }875 }876 877 /**878 * Acquires in exclusive interruptible mode.879 * param arg the acquire argument880 */881 private void doAcquireInterruptibly(int arg)882 throws InterruptedException {883 final Node node addWaiter(Node.EXCLUSIVE);884 boolean failed true;885 try {886 for (;;) {887 final Node p node.predecessor();888 if (p head tryAcquire(arg)) {889 setHead(node);890 p.next null; // help GC891 failed false;892 return;893 }894 if (shouldParkAfterFailedAcquire(p, node) 895 parkAndCheckInterrupt())896 throw new InterruptedException();897 }898 } finally {899 if (failed)900 cancelAcquire(node);901 }902 }903 904 /**905 * Acquires in exclusive timed mode.906 *907 * param arg the acquire argument908 * param nanosTimeout max wait time909 * return {code true} if acquired910 */911 private boolean doAcquireNanos(int arg, long nanosTimeout)912 throws InterruptedException {913 long lastTime System.nanoTime();914 final Node node addWaiter(Node.EXCLUSIVE);915 boolean failed true;916 try {917 for (;;) {918 final Node p node.predecessor();919 if (p head tryAcquire(arg)) {920 setHead(node);921 p.next null; // help GC922 failed false;923 return true;924 }925 if (nanosTimeout 0)926 return false;927 if (shouldParkAfterFailedAcquire(p, node) 928 nanosTimeout spinForTimeoutThreshold)929 LockSupport.parkNanos(this, nanosTimeout);930 long now System.nanoTime();931 nanosTimeout - now - lastTime;932 lastTime now;933 if (Thread.interrupted())934 throw new InterruptedException();935 }936 } finally {937 if (failed)938 cancelAcquire(node);939 }940 }941 942 /**943 * Acquires in shared uninterruptible mode.944 * param arg the acquire argument945 */946 private void doAcquireShared(int arg) {947 final Node node addWaiter(Node.SHARED);948 boolean failed true;949 try {950 boolean interrupted false;951 for (;;) {952 final Node p node.predecessor();953 if (p head) {954 int r tryAcquireShared(arg);955 if (r 0) {956 setHeadAndPropagate(node, r);957 p.next null; // help GC958 if (interrupted)959 selfInterrupt();960 failed false;961 return;962 }963 }964 if (shouldParkAfterFailedAcquire(p, node) 965 parkAndCheckInterrupt())966 interrupted true;967 }968 } finally {969 if (failed)970 cancelAcquire(node);971 }972 }973 974 /**975 * Acquires in shared interruptible mode.976 * param arg the acquire argument977 */978 private void doAcquireSharedInterruptibly(int arg)979 throws InterruptedException {980 final Node node addWaiter(Node.SHARED);981 boolean failed true;982 try {983 for (;;) {984 final Node p node.predecessor();985 if (p head) {986 int r tryAcquireShared(arg);987 if (r 0) {988 setHeadAndPropagate(node, r);989 p.next null; // help GC990 failed false;991 return;992 }993 }994 if (shouldParkAfterFailedAcquire(p, node) 995 parkAndCheckInterrupt())996 throw new InterruptedException();997 }998 } finally {999 if (failed) 1000 cancelAcquire(node); 1001 } 1002 } 1003 1004 /** 1005 * Acquires in shared timed mode. 1006 * 1007 * param arg the acquire argument 1008 * param nanosTimeout max wait time 1009 * return {code true} if acquired 1010 */ 1011 private boolean doAcquireSharedNanos(int arg, long nanosTimeout) 1012 throws InterruptedException { 1013 1014 long lastTime System.nanoTime(); 1015 final Node node addWaiter(Node.SHARED); 1016 boolean failed true; 1017 try { 1018 for (;;) { 1019 final Node p node.predecessor(); 1020 if (p head) { 1021 int r tryAcquireShared(arg); 1022 if (r 0) { 1023 setHeadAndPropagate(node, r); 1024 p.next null; // help GC 1025 failed false; 1026 return true; 1027 } 1028 } 1029 if (nanosTimeout 0) 1030 return false; 1031 if (shouldParkAfterFailedAcquire(p, node) 1032 nanosTimeout spinForTimeoutThreshold) 1033 LockSupport.parkNanos(this, nanosTimeout); 1034 long now System.nanoTime(); 1035 nanosTimeout - now - lastTime; 1036 lastTime now; 1037 if (Thread.interrupted()) 1038 throw new InterruptedException(); 1039 } 1040 } finally { 1041 if (failed) 1042 cancelAcquire(node); 1043 } 1044 } 1045 1046 // Main exported methods 1047 1048 /** 1049 * Attempts to acquire in exclusive mode. This method should query 1050 * if the state of the object permits it to be acquired in the 1051 * exclusive mode, and if so to acquire it. 1052 * 1053 * pThis method is always invoked by the thread performing 1054 * acquire. If this method reports failure, the acquire method 1055 * may queue the thread, if it is not already queued, until it is 1056 * signalled by a release from some other thread. This can be used 1057 * to implement method {link Lock#tryLock()}. 1058 * 1059 * pThe default 1060 * implementation throws {link UnsupportedOperationException}. 1061 * 1062 * param arg the acquire argument. This value is always the one 1063 * passed to an acquire method, or is the value saved on entry 1064 * to a condition wait. The value is otherwise uninterpreted 1065 * and can represent anything you like. 1066 * return {code true} if successful. Upon success, this object has 1067 * been acquired. 1068 * throws IllegalMonitorStateException if acquiring would place this 1069 * synchronizer in an illegal state. This exception must be 1070 * thrown in a consistent fashion for synchronization to work 1071 * correctly. 1072 * throws UnsupportedOperationException if exclusive mode is not supported 1073 */ 1074 protected boolean tryAcquire(int arg) { 1075 throw new UnsupportedOperationException(); 1076 } 1077 1078 /** 1079 * Attempts to set the state to reflect a release in exclusive 1080 * mode. 1081 * 1082 * pThis method is always invoked by the thread performing release. 1083 * 1084 * pThe default implementation throws 1085 * {link UnsupportedOperationException}. 1086 * 1087 * param arg the release argument. This value is always the one 1088 * passed to a release method, or the current state value upon 1089 * entry to a condition wait. The value is otherwise 1090 * uninterpreted and can represent anything you like. 1091 * return {code true} if this object is now in a fully released 1092 * state, so that any waiting threads may attempt to acquire; 1093 * and {code false} otherwise. 1094 * throws IllegalMonitorStateException if releasing would place this 1095 * synchronizer in an illegal state. This exception must be 1096 * thrown in a consistent fashion for synchronization to work 1097 * correctly. 1098 * throws UnsupportedOperationException if exclusive mode is not supported 1099 */ 1100 protected boolean tryRelease(int arg) { 1101 throw new UnsupportedOperationException(); 1102 } 1103 1104 /** 1105 * Attempts to acquire in shared mode. This method should query if 1106 * the state of the object permits it to be acquired in the shared 1107 * mode, and if so to acquire it. 1108 * 1109 * pThis method is always invoked by the thread performing 1110 * acquire. If this method reports failure, the acquire method 1111 * may queue the thread, if it is not already queued, until it is 1112 * signalled by a release from some other thread. 1113 * 1114 * pThe default implementation throws {link 1115 * UnsupportedOperationException}. 1116 * 1117 * param arg the acquire argument. This value is always the one 1118 * passed to an acquire method, or is the value saved on entry 1119 * to a condition wait. The value is otherwise uninterpreted 1120 * and can represent anything you like. 1121 * return a negative value on failure; zero if acquisition in shared 1122 * mode succeeded but no subsequent shared-mode acquire can 1123 * succeed; and a positive value if acquisition in shared 1124 * mode succeeded and subsequent shared-mode acquires might 1125 * also succeed, in which case a subsequent waiting thread 1126 * must check availability. (Support for three different 1127 * return values enables this method to be used in contexts 1128 * where acquires only sometimes act exclusively.) Upon 1129 * success, this object has been acquired. 1130 * throws IllegalMonitorStateException if acquiring would place this 1131 * synchronizer in an illegal state. This exception must be 1132 * thrown in a consistent fashion for synchronization to work 1133 * correctly. 1134 * throws UnsupportedOperationException if shared mode is not supported 1135 */ 1136 protected int tryAcquireShared(int arg) { 1137 throw new UnsupportedOperationException(); 1138 } 1139 1140 /** 1141 * Attempts to set the state to reflect a release in shared mode. 1142 * 1143 * pThis method is always invoked by the thread performing release. 1144 * 1145 * pThe default implementation throws 1146 * {link UnsupportedOperationException}. 1147 * 1148 * param arg the release argument. This value is always the one 1149 * passed to a release method, or the current state value upon 1150 * entry to a condition wait. The value is otherwise 1151 * uninterpreted and can represent anything you like. 1152 * return {code true} if this release of shared mode may permit a 1153 * waiting acquire (shared or exclusive) to succeed; and 1154 * {code false} otherwise 1155 * throws IllegalMonitorStateException if releasing would place this 1156 * synchronizer in an illegal state. This exception must be 1157 * thrown in a consistent fashion for synchronization to work 1158 * correctly. 1159 * throws UnsupportedOperationException if shared mode is not supported 1160 */ 1161 protected boolean tryReleaseShared(int arg) { 1162 throw new UnsupportedOperationException(); 1163 } 1164 1165 /** 1166 * Returns {code true} if synchronization is held exclusively with 1167 * respect to the current (calling) thread. This method is invoked 1168 * upon each call to a non-waiting {link ConditionObject} method. 1169 * (Waiting methods instead invoke {link #release}.) 1170 * 1171 * pThe default implementation throws {link 1172 * UnsupportedOperationException}. This method is invoked 1173 * internally only within {link ConditionObject} methods, so need 1174 * not be defined if conditions are not used. 1175 * 1176 * return {code true} if synchronization is held exclusively; 1177 * {code false} otherwise 1178 * throws UnsupportedOperationException if conditions are not supported 1179 */ 1180 protected boolean isHeldExclusively() { 1181 throw new UnsupportedOperationException(); 1182 } 1183 1184 /** 1185 * Acquires in exclusive mode, ignoring interrupts. Implemented 1186 * by invoking at least once {link #tryAcquire}, 1187 * returning on success. Otherwise the thread is queued, possibly 1188 * repeatedly blocking and unblocking, invoking {link 1189 * #tryAcquire} until success. This method can be used 1190 * to implement method {link Lock#lock}. 1191 * 1192 * param arg the acquire argument. This value is conveyed to 1193 * {link #tryAcquire} but is otherwise uninterpreted and 1194 * can represent anything you like. 1195 */ 1196 public final void acquire(int arg) { 1197 if (!tryAcquire(arg) 1198 acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) 1199 selfInterrupt(); 1200 } 1201 1202 /** 1203 * Acquires in exclusive mode, aborting if interrupted. 1204 * Implemented by first checking interrupt status, then invoking 1205 * at least once {link #tryAcquire}, returning on 1206 * success. Otherwise the thread is queued, possibly repeatedly 1207 * blocking and unblocking, invoking {link #tryAcquire} 1208 * until success or the thread is interrupted. This method can be 1209 * used to implement method {link Lock#lockInterruptibly}. 1210 * 1211 * param arg the acquire argument. This value is conveyed to 1212 * {link #tryAcquire} but is otherwise uninterpreted and 1213 * can represent anything you like. 1214 * throws InterruptedException if the current thread is interrupted 1215 */ 1216 public final void acquireInterruptibly(int arg) 1217 throws InterruptedException { 1218 if (Thread.interrupted()) 1219 throw new InterruptedException(); 1220 if (!tryAcquire(arg)) 1221 doAcquireInterruptibly(arg); 1222 } 1223 1224 /** 1225 * Attempts to acquire in exclusive mode, aborting if interrupted, 1226 * and failing if the given timeout elapses. Implemented by first 1227 * checking interrupt status, then invoking at least once {link 1228 * #tryAcquire}, returning on success. Otherwise, the thread is 1229 * queued, possibly repeatedly blocking and unblocking, invoking 1230 * {link #tryAcquire} until success or the thread is interrupted 1231 * or the timeout elapses. This method can be used to implement 1232 * method {link Lock#tryLock(long, TimeUnit)}. 1233 * 1234 * param arg the acquire argument. This value is conveyed to 1235 * {link #tryAcquire} but is otherwise uninterpreted and 1236 * can represent anything you like. 1237 * param nanosTimeout the maximum number of nanoseconds to wait 1238 * return {code true} if acquired; {code false} if timed out 1239 * throws InterruptedException if the current thread is interrupted 1240 */ 1241 public final boolean tryAcquireNanos(int arg, long nanosTimeout) 1242 throws InterruptedException { 1243 if (Thread.interrupted()) 1244 throw new InterruptedException(); 1245 return tryAcquire(arg) || 1246 doAcquireNanos(arg, nanosTimeout); 1247 } 1248 1249 /** 1250 * Releases in exclusive mode. Implemented by unblocking one or 1251 * more threads if {link #tryRelease} returns true. 1252 * This method can be used to implement method {link Lock#unlock}. 1253 * 1254 * param arg the release argument. This value is conveyed to 1255 * {link #tryRelease} but is otherwise uninterpreted and 1256 * can represent anything you like. 1257 * return the value returned from {link #tryRelease} 1258 */ 1259 public final boolean release(int arg) { 1260 if (tryRelease(arg)) { 1261 Node h head; 1262 if (h ! null h.waitStatus ! 0) 1263 unparkSuccessor(h); 1264 return true; 1265 } 1266 return false; 1267 } 1268 1269 /** 1270 * Acquires in shared mode, ignoring interrupts. Implemented by 1271 * first invoking at least once {link #tryAcquireShared}, 1272 * returning on success. Otherwise the thread is queued, possibly 1273 * repeatedly blocking and unblocking, invoking {link 1274 * #tryAcquireShared} until success. 1275 * 1276 * param arg the acquire argument. This value is conveyed to 1277 * {link #tryAcquireShared} but is otherwise uninterpreted 1278 * and can represent anything you like. 1279 */ 1280 public final void acquireShared(int arg) { 1281 if (tryAcquireShared(arg) 0) 1282 doAcquireShared(arg); 1283 } 1284 1285 /** 1286 * Acquires in shared mode, aborting if interrupted. Implemented 1287 * by first checking interrupt status, then invoking at least once 1288 * {link #tryAcquireShared}, returning on success. Otherwise the 1289 * thread is queued, possibly repeatedly blocking and unblocking, 1290 * invoking {link #tryAcquireShared} until success or the thread 1291 * is interrupted. 1292 * param arg the acquire argument 1293 * This value is conveyed to {link #tryAcquireShared} but is 1294 * otherwise uninterpreted and can represent anything 1295 * you like. 1296 * throws InterruptedException if the current thread is interrupted 1297 */ 1298 public final void acquireSharedInterruptibly(int arg) 1299 throws InterruptedException { 1300 if (Thread.interrupted()) 1301 throw new InterruptedException(); 1302 if (tryAcquireShared(arg) 0) 1303 doAcquireSharedInterruptibly(arg); 1304 } 1305 1306 /** 1307 * Attempts to acquire in shared mode, aborting if interrupted, and 1308 * failing if the given timeout elapses. Implemented by first 1309 * checking interrupt status, then invoking at least once {link 1310 * #tryAcquireShared}, returning on success. Otherwise, the 1311 * thread is queued, possibly repeatedly blocking and unblocking, 1312 * invoking {link #tryAcquireShared} until success or the thread 1313 * is interrupted or the timeout elapses. 1314 * 1315 * param arg the acquire argument. This value is conveyed to 1316 * {link #tryAcquireShared} but is otherwise uninterpreted 1317 * and can represent anything you like. 1318 * param nanosTimeout the maximum number of nanoseconds to wait 1319 * return {code true} if acquired; {code false} if timed out 1320 * throws InterruptedException if the current thread is interrupted 1321 */ 1322 public final boolean tryAcquireSharedNanos(int arg, long nanosTimeout) 1323 throws InterruptedException { 1324 if (Thread.interrupted()) 1325 throw new InterruptedException(); 1326 return tryAcquireShared(arg) 0 || 1327 doAcquireSharedNanos(arg, nanosTimeout); 1328 } 1329 1330 /** 1331 * Releases in shared mode. Implemented by unblocking one or more 1332 * threads if {link #tryReleaseShared} returns true. 1333 * 1334 * param arg the release argument. This value is conveyed to 1335 * {link #tryReleaseShared} but is otherwise uninterpreted 1336 * and can represent anything you like. 1337 * return the value returned from {link #tryReleaseShared} 1338 */ 1339 public final boolean releaseShared(int arg) { 1340 if (tryReleaseShared(arg)) { 1341 doReleaseShared(); 1342 return true; 1343 } 1344 return false; 1345 } 1346 1347 // Queue inspection methods 1348 1349 /** 1350 * Queries whether any threads are waiting to acquire. Note that 1351 * because cancellations due to interrupts and timeouts may occur 1352 * at any time, a {code true} return does not guarantee that any 1353 * other thread will ever acquire. 1354 * 1355 * pIn this implementation, this operation returns in 1356 * constant time. 1357 * 1358 * return {code true} if there may be other threads waiting to acquire 1359 */ 1360 public final boolean hasQueuedThreads() { 1361 return head ! tail; 1362 } 1363 1364 /** 1365 * Queries whether any threads have ever contended to acquire this 1366 * synchronizer; that is if an acquire method has ever blocked. 1367 * 1368 * pIn this implementation, this operation returns in 1369 * constant time. 1370 * 1371 * return {code true} if there has ever been contention 1372 */ 1373 public final boolean hasContended() { 1374 return head ! null; 1375 } 1376 1377 /** 1378 * Returns the first (longest-waiting) thread in the queue, or 1379 * {code null} if no threads are currently queued. 1380 * 1381 * pIn this implementation, this operation normally returns in 1382 * constant time, but may iterate upon contention if other threads are 1383 * concurrently modifying the queue. 1384 * 1385 * return the first (longest-waiting) thread in the queue, or 1386 * {code null} if no threads are currently queued 1387 */ 1388 public final Thread getFirstQueuedThread() { 1389 // handle only fast path, else relay 1390 return (head tail) ? null : fullGetFirstQueuedThread(); 1391 } 1392 1393 /** 1394 * Version of getFirstQueuedThread called when fastpath fails 1395 */ 1396 private Thread fullGetFirstQueuedThread() { 1397 /* 1398 * The first node is normally head.next. Try to get its 1399 * thread field, ensuring consistent reads: If thread 1400 * field is nulled out or s.prev is no longer head, then 1401 * some other thread(s) concurrently performed setHead in 1402 * between some of our reads. We try this twice before 1403 * resorting to traversal. 1404 */ 1405 Node h, s; 1406 Thread st; 1407 if (((h head) ! null (s h.next) ! null 1408 s.prev head (st s.thread) ! null) || 1409 ((h head) ! null (s h.next) ! null 1410 s.prev head (st s.thread) ! null)) 1411 return st; 1412 1413 /* 1414 * Heads next field might not have been set yet, or may have 1415 * been unset after setHead. So we must check to see if tail 1416 * is actually first node. If not, we continue on, safely 1417 * traversing from tail back to head to find first, 1418 * guaranteeing termination. 1419 */ 1420 1421 Node t tail; 1422 Thread firstThread null; 1423 while (t ! null t ! head) { 1424 Thread tt t.thread; 1425 if (tt ! null) 1426 firstThread tt; 1427 t t.prev; 1428 } 1429 return firstThread; 1430 } 1431 1432 /** 1433 * Returns true if the given thread is currently queued. 1434 * 1435 * pThis implementation traverses the queue to determine 1436 * presence of the given thread. 1437 * 1438 * param thread the thread 1439 * return {code true} if the given thread is on the queue 1440 * throws NullPointerException if the thread is null 1441 */ 1442 public final boolean isQueued(Thread thread) { 1443 if (thread null) 1444 throw new NullPointerException(); 1445 for (Node p tail; p ! null; p p.prev) 1446 if (p.thread thread) 1447 return true; 1448 return false; 1449 } 1450 1451 /** 1452 * Returns {code true} if the apparent first queued thread, if one 1453 * exists, is waiting in exclusive mode. If this method returns 1454 * {code true}, and the current thread is attempting to acquire in 1455 * shared mode (that is, this method is invoked from {link 1456 * #tryAcquireShared}) then it is guaranteed that the current thread 1457 * is not the first queued thread. Used only as a heuristic in 1458 * ReentrantReadWriteLock. 1459 */ 1460 final boolean apparentlyFirstQueuedIsExclusive() { 1461 Node h, s; 1462 return (h head) ! null 1463 (s h.next) ! null 1464 !s.isShared() 1465 s.thread ! null; 1466 } 1467 1468 /** 1469 * Queries whether any threads have been waiting to acquire longer 1470 * than the current thread. 1471 * 1472 * pAn invocation of this method is equivalent to (but may be 1473 * more efficient than): 1474 * pre {code 1475 * getFirstQueuedThread() ! Thread.currentThread() 1476 * hasQueuedThreads()}/pre 1477 * 1478 * pNote that because cancellations due to interrupts and 1479 * timeouts may occur at any time, a {code true} return does not 1480 * guarantee that some other thread will acquire before the current 1481 * thread. Likewise, it is possible for another thread to win a 1482 * race to enqueue after this method has returned {code false}, 1483 * due to the queue being empty. 1484 * 1485 * pThis method is designed to be used by a fair synchronizer to 1486 * avoid a hrefAbstractQueuedSynchronizer#bargingbarging/a. 1487 * Such a synchronizers {link #tryAcquire} method should return 1488 * {code false}, and its {link #tryAcquireShared} method should 1489 * return a negative value, if this method returns {code true} 1490 * (unless this is a reentrant acquire). For example, the {code 1491 * tryAcquire} method for a fair, reentrant, exclusive mode 1492 * synchronizer might look like this: 1493 * 1494 * pre {code 1495 * protected boolean tryAcquire(int arg) { 1496 * if (isHeldExclusively()) { 1497 * // A reentrant acquire; increment hold count 1498 * return true; 1499 * } else if (hasQueuedPredecessors()) { 1500 * return false; 1501 * } else { 1502 * // try to acquire normally 1503 * } 1504 * }}/pre 1505 * 1506 * return {code true} if there is a queued thread preceding the 1507 * current thread, and {code false} if the current thread 1508 * is at the head of the queue or the queue is empty 1509 * since 1.7 1510 */ 1511 public final boolean hasQueuedPredecessors() { 1512 // The correctness of this depends on head being initialized 1513 // before tail and on head.next being accurate if the current 1514 // thread is first in queue. 1515 Node t tail; // Read fields in reverse initialization order 1516 Node h head; 1517 Node s; 1518 return h ! t 1519 ((s h.next) null || s.thread ! Thread.currentThread()); 1520 } 1521 1522 1523 // Instrumentation and monitoring methods 1524 1525 /** 1526 * Returns an estimate of the number of threads waiting to 1527 * acquire. The value is only an estimate because the number of 1528 * threads may change dynamically while this method traverses 1529 * internal data structures. This method is designed for use in 1530 * monitoring system state, not for synchronization 1531 * control. 1532 * 1533 * return the estimated number of threads waiting to acquire 1534 */ 1535 public final int getQueueLength() { 1536 int n 0; 1537 for (Node p tail; p ! null; p p.prev) { 1538 if (p.thread ! null) 1539 n; 1540 } 1541 return n; 1542 } 1543 1544 /** 1545 * Returns a collection containing threads that may be waiting to 1546 * acquire. Because the actual set of threads may change 1547 * dynamically while constructing this result, the returned 1548 * collection is only a best-effort estimate. The elements of the 1549 * returned collection are in no particular order. This method is 1550 * designed to facilitate construction of subclasses that provide 1551 * more extensive monitoring facilities. 1552 * 1553 * return the collection of threads 1554 */ 1555 public final CollectionThread getQueuedThreads() { 1556 ArrayListThread list new ArrayListThread(); 1557 for (Node p tail; p ! null; p p.prev) { 1558 Thread t p.thread; 1559 if (t ! null) 1560 list.add(t); 1561 } 1562 return list; 1563 } 1564 1565 /** 1566 * Returns a collection containing threads that may be waiting to 1567 * acquire in exclusive mode. This has the same properties 1568 * as {link #getQueuedThreads} except that it only returns 1569 * those threads waiting due to an exclusive acquire. 1570 * 1571 * return the collection of threads 1572 */ 1573 public final CollectionThread getExclusiveQueuedThreads() { 1574 ArrayListThread list new ArrayListThread(); 1575 for (Node p tail; p ! null; p p.prev) { 1576 if (!p.isShared()) { 1577 Thread t p.thread; 1578 if (t ! null) 1579 list.add(t); 1580 } 1581 } 1582 return list; 1583 } 1584 1585 /** 1586 * Returns a collection containing threads that may be waiting to 1587 * acquire in shared mode. This has the same properties 1588 * as {link #getQueuedThreads} except that it only returns 1589 * those threads waiting due to a shared acquire. 1590 * 1591 * return the collection of threads 1592 */ 1593 public final CollectionThread getSharedQueuedThreads() { 1594 ArrayListThread list new ArrayListThread(); 1595 for (Node p tail; p ! null; p p.prev) { 1596 if (p.isShared()) { 1597 Thread t p.thread; 1598 if (t ! null) 1599 list.add(t); 1600 } 1601 } 1602 return list; 1603 } 1604 1605 /** 1606 * Returns a string identifying this synchronizer, as well as its state. 1607 * The state, in brackets, includes the String {code State } 1608 * followed by the current value of {link #getState}, and either 1609 * {code nonempty} or {code empty} depending on whether the 1610 * queue is empty. 1611 * 1612 * return a string identifying this synchronizer, as well as its state 1613 */ 1614 public String toString() { 1615 int s getState(); 1616 String q hasQueuedThreads() ? non : ; 1617 return super.toString() 1618 [State s , q empty queue]; 1619 } 1620 1621 1622 // Internal support methods for Conditions 1623 1624 /** 1625 * Returns true if a node, always one that was initially placed on 1626 * a condition queue, is now waiting to reacquire on sync queue. 1627 * param node the node 1628 * return true if is reacquiring 1629 */ 1630 final boolean isOnSyncQueue(Node node) { 1631 if (node.waitStatus Node.CONDITION || node.prev null) 1632 return false; 1633 if (node.next ! null) // If has successor, it must be on queue 1634 return true; 1635 /* 1636 * node.prev can be non-null, but not yet on queue because 1637 * the CAS to place it on queue can fail. So we have to 1638 * traverse from tail to make sure it actually made it. It 1639 * will always be near the tail in calls to this method, and 1640 * unless the CAS failed (which is unlikely), it will be 1641 * there, so we hardly ever traverse much. 1642 */ 1643 return findNodeFromTail(node); 1644 } 1645 1646 /** 1647 * Returns true if node is on sync queue by searching backwards from tail. 1648 * Called only when needed by isOnSyncQueue. 1649 * return true if present 1650 */ 1651 private boolean findNodeFromTail(Node node) { 1652 Node t tail; 1653 for (;;) { 1654 if (t node) 1655 return true; 1656 if (t null) 1657 return false; 1658 t t.prev; 1659 } 1660 } 1661 1662 /** 1663 * Transfers a node from a condition queue onto sync queue. 1664 * Returns true if successful. 1665 * param node the node 1666 * return true if successfully transferred (else the node was 1667 * cancelled before signal). 1668 */ 1669 final boolean transferForSignal(Node node) { 1670 /* 1671 * If cannot change waitStatus, the node has been cancelled. 1672 */ 1673 if (!compareAndSetWaitStatus(node, Node.CONDITION, 0)) 1674 return false; 1675 1676 /* 1677 * Splice onto queue and try to set waitStatus of predecessor to 1678 * indicate that thread is (probably) waiting. If cancelled or 1679 * attempt to set waitStatus fails, wake up to resync (in which 1680 * case the waitStatus can be transiently and harmlessly wrong). 1681 */ 1682 Node p enq(node); 1683 int ws p.waitStatus; 1684 if (ws 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL)) 1685 LockSupport.unpark(node.thread); 1686 return true; 1687 } 1688 1689 /** 1690 * Transfers node, if necessary, to sync queue after a cancelled 1691 * wait. Returns true if thread was cancelled before being 1692 * signalled. 1693 * param current the waiting thread 1694 * param node its node 1695 * return true if cancelled before the node was signalled 1696 */ 1697 final boolean transferAfterCancelledWait(Node node) { 1698 if (compareAndSetWaitStatus(node, Node.CONDITION, 0)) { 1699 enq(node); 1700 return true; 1701 } 1702 /* 1703 * If we lost out to a signal(), then we cant proceed 1704 * until it finishes its enq(). Cancelling during an 1705 * incomplete transfer is both rare and transient, so just 1706 * spin. 1707 */ 1708 while (!isOnSyncQueue(node)) 1709 Thread.yield(); 1710 return false; 1711 } 1712 1713 /** 1714 * Invokes release with current state value; returns saved state. 1715 * Cancels node and throws exception on failure. 1716 * param node the condition node for this wait 1717 * return previous sync state 1718 */ 1719 final int fullyRelease(Node node) { 1720 boolean failed true; 1721 try { 1722 int savedState getState(); 1723 if (release(savedState)) { 1724 failed false; 1725 return savedState; 1726 } else { 1727 throw new IllegalMonitorStateException(); 1728 } 1729 } finally { 1730 if (failed) 1731 node.waitStatus Node.CANCELLED; 1732 } 1733 } 1734 1735 // Instrumentation methods for conditions 1736 1737 /** 1738 * Queries whether the given ConditionObject 1739 * uses this synchronizer as its lock. 1740 * 1741 * param condition the condition 1742 * return tttrue/tt if owned 1743 * throws NullPointerException if the condition is null 1744 */ 1745 public final boolean owns(ConditionObject condition) { 1746 if (condition null) 1747 throw new NullPointerException(); 1748 return condition.isOwnedBy(this); 1749 } 1750 1751 /** 1752 * Queries whether any threads are waiting on the given condition 1753 * associated with this synchronizer. Note that because timeouts 1754 * and interrupts may occur at any time, a tttrue/tt return 1755 * does not guarantee that a future ttsignal/tt will awaken 1756 * any threads. This method is designed primarily for use in 1757 * monitoring of the system state. 1758 * 1759 * param condition the condition 1760 * return tttrue/tt if there are any waiting threads 1761 * throws IllegalMonitorStateException if exclusive synchronization 1762 * is not held 1763 * throws IllegalArgumentException if the given condition is 1764 * not associated with this synchronizer 1765 * throws NullPointerException if the condition is null 1766 */ 1767 public final boolean hasWaiters(ConditionObject condition) { 1768 if (!owns(condition)) 1769 throw new IllegalArgumentException(Not owner); 1770 return condition.hasWaiters(); 1771 } 1772 1773 /** 1774 * Returns an estimate of the number of threads waiting on the 1775 * given condition associated with this synchronizer. Note that 1776 * because timeouts and interrupts may occur at any time, the 1777 * estimate serves only as an upper bound on the actual number of 1778 * waiters. This method is designed for use in monitoring of the 1779 * system state, not for synchronization control. 1780 * 1781 * param condition the condition 1782 * return the estimated number of waiting threads 1783 * throws IllegalMonitorStateException if exclusive synchronization 1784 * is not held 1785 * throws IllegalArgumentException if the given condition is 1786 * not associated with this synchronizer 1787 * throws NullPointerException if the condition is null 1788 */ 1789 public final int getWaitQueueLength(ConditionObject condition) { 1790 if (!owns(condition)) 1791 throw new IllegalArgumentException(Not owner); 1792 return condition.getWaitQueueLength(); 1793 } 1794 1795 /** 1796 * Returns a collection containing those threads that may be 1797 * waiting on the given condition associated with this 1798 * synchronizer. Because the actual set of threads may change 1799 * dynamically while constructing this result, the returned 1800 * collection is only a best-effort estimate. The elements of the 1801 * returned collection are in no particular order. 1802 * 1803 * param condition the condition 1804 * return the collection of threads 1805 * throws IllegalMonitorStateException if exclusive synchronization 1806 * is not held 1807 * throws IllegalArgumentException if the given condition is 1808 * not associated with this synchronizer 1809 * throws NullPointerException if the condition is null 1810 */ 1811 public final CollectionThread getWaitingThreads(ConditionObject condition) { 1812 if (!owns(condition)) 1813 throw new IllegalArgumentException(Not owner); 1814 return condition.getWaitingThreads(); 1815 } 1816 1817 /** 1818 * Condition implementation for a {link 1819 * AbstractQueuedSynchronizer} serving as the basis of a {link 1820 * Lock} implementation. 1821 * 1822 * pMethod documentation for this class describes mechanics, 1823 * not behavioral specifications from the point of view of Lock 1824 * and Condition users. Exported versions of this class will in 1825 * general need to be accompanied by documentation describing 1826 * condition semantics that rely on those of the associated 1827 * ttAbstractQueuedSynchronizer/tt. 1828 * 1829 * pThis class is Serializable, but all fields are transient, 1830 * so deserialized conditions have no waiters. 1831 */ 1832 public class ConditionObject implements Condition, java.io.Serializable { 1833 private static final long serialVersionUID 1173984872572414699L; 1834 /** First node of condition queue. */ 1835 private transient Node firstWaiter; 1836 /** Last node of condition queue. */ 1837 private transient Node lastWaiter; 1838 1839 /** 1840 * Creates a new ttConditionObject/tt instance. 1841 */ 1842 public ConditionObject() { } 1843 1844 // Internal methods 1845 1846 /** 1847 * Adds a new waiter to wait queue. 1848 * return its new wait node 1849 */ 1850 private Node addConditionWaiter() { 1851 Node t lastWaiter; 1852 // If lastWaiter is cancelled, clean out. 1853 if (t ! null t.waitStatus ! Node.CONDITION) { 1854 unlinkCancelledWaiters(); 1855 t lastWaiter; 1856 } 1857 Node node new Node(Thread.currentThread(), Node.CONDITION); 1858 if (t null) 1859 firstWaiter node; 1860 else 1861 t.nextWaiter node; 1862 lastWaiter node; 1863 return node; 1864 } 1865 1866 /** 1867 * Removes and transfers nodes until hit non-cancelled one or 1868 * null. Split out from signal in part to encourage compilers 1869 * to inline the case of no waiters. 1870 * param first (non-null) the first node on condition queue 1871 */ 1872 private void doSignal(Node first) { 1873 do { 1874 if ( (firstWaiter first.nextWaiter) null) 1875 lastWaiter null; 1876 first.nextWaiter null; 1877 } while (!transferForSignal(first) 1878 (first firstWaiter) ! null); 1879 } 1880 1881 /** 1882 * Removes and transfers all nodes. 1883 * param first (non-null) the first node on condition queue 1884 */ 1885 private void doSignalAll(Node first) { 1886 lastWaiter firstWaiter null; 1887 do { 1888 Node next first.nextWaiter; 1889 first.nextWaiter null; 1890 transferForSignal(first); 1891 first next; 1892 } while (first ! null); 1893 } 1894 1895 /** 1896 * Unlinks cancelled waiter nodes from condition queue. 1897 * Called only while holding lock. This is called when 1898 * cancellation occurred during condition wait, and upon 1899 * insertion of a new waiter when lastWaiter is seen to have 1900 * been cancelled. This method is needed to avoid garbage 1901 * retention in the absence of signals. So even though it may 1902 * require a full traversal, it comes into play only when 1903 * timeouts or cancellations occur in the absence of 1904 * signals. It traverses all nodes rather than stopping at a 1905 * particular target to unlink all pointers to garbage nodes 1906 * without requiring many re-traversals during cancellation 1907 * storms. 1908 */ 1909 private void unlinkCancelledWaiters() { 1910 Node t firstWaiter; 1911 Node trail null; 1912 while (t ! null) { 1913 Node next t.nextWaiter; 1914 if (t.waitStatus ! Node.CONDITION) { 1915 t.nextWaiter null; 1916 if (trail null) 1917 firstWaiter next; 1918 else 1919 trail.nextWaiter next; 1920 if (next null) 1921 lastWaiter trail; 1922 } 1923 else 1924 trail t; 1925 t next; 1926 } 1927 } 1928 1929 // public methods 1930 1931 /** 1932 * Moves the longest-waiting thread, if one exists, from the 1933 * wait queue for this condition to the wait queue for the 1934 * owning lock. 1935 * 1936 * throws IllegalMonitorStateException if {link #isHeldExclusively} 1937 * returns {code false} 1938 */ 1939 public final void signal() { 1940 if (!isHeldExclusively()) 1941 throw new IllegalMonitorStateException(); 1942 Node first firstWaiter; 1943 if (first ! null) 1944 doSignal(first); 1945 } 1946 1947 /** 1948 * Moves all threads from the wait queue for this condition to 1949 * the wait queue for the owning lock. 1950 * 1951 * throws IllegalMonitorStateException if {link #isHeldExclusively} 1952 * returns {code false} 1953 */ 1954 public final void signalAll() { 1955 if (!isHeldExclusively()) 1956 throw new IllegalMonitorStateException(); 1957 Node first firstWaiter; 1958 if (first ! null) 1959 doSignalAll(first); 1960 } 1961 1962 /** 1963 * Implements uninterruptible condition wait. 1964 * ol 1965 * li Save lock state returned by {link #getState}. 1966 * li Invoke {link #release} with 1967 * saved state as argument, throwing 1968 * IllegalMonitorStateException if it fails. 1969 * li Block until signalled. 1970 * li Reacquire by invoking specialized version of 1971 * {link #acquire} with saved state as argument. 1972 * /ol 1973 */ 1974 public final void awaitUninterruptibly() { 1975 Node node addConditionWaiter(); 1976 int savedState fullyRelease(node); 1977 boolean interrupted false; 1978 while (!isOnSyncQueue(node)) { 1979 LockSupport.park(this); 1980 if (Thread.interrupted()) 1981 interrupted true; 1982 } 1983 if (acquireQueued(node, savedState) || interrupted) 1984 selfInterrupt(); 1985 } 1986 1987 /* 1988 * For interruptible waits, we need to track whether to throw 1989 * InterruptedException, if interrupted while blocked on 1990 * condition, versus reinterrupt current thread, if 1991 * interrupted while blocked waiting to re-acquire. 1992 */ 1993 1994 /** Mode meaning to reinterrupt on exit from wait */ 1995 private static final int REINTERRUPT 1; 1996 /** Mode meaning to throw InterruptedException on exit from wait */ 1997 private static final int THROW_IE -1; 1998 1999 /** 2000 * Checks for interrupt, returning THROW_IE if interrupted 2001 * before signalled, REINTERRUPT if after signalled, or 2002 * 0 if not interrupted. 2003 */ 2004 private int checkInterruptWhileWaiting(Node node) { 2005 return Thread.interrupted() ? 2006 (transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) : 2007 0; 2008 } 2009 2010 /** 2011 * Throws InterruptedException, reinterrupts current thread, or 2012 * does nothing, depending on mode. 2013 */ 2014 private void reportInterruptAfterWait(int interruptMode) 2015 throws InterruptedException { 2016 if (interruptMode THROW_IE) 2017 throw new InterruptedException(); 2018 else if (interruptMode REINTERRUPT) 2019 selfInterrupt(); 2020 } 2021 2022 /** 2023 * Implements interruptible condition wait. 2024 * ol 2025 * li If current thread is interrupted, throw InterruptedException. 2026 * li Save lock state returned by {link #getState}. 2027 * li Invoke {link #release} with 2028 * saved state as argument, throwing 2029 * IllegalMonitorStateException if it fails. 2030 * li Block until signalled or interrupted. 2031 * li Reacquire by invoking specialized version of 2032 * {link #acquire} with saved state as argument. 2033 * li If interrupted while blocked in step 4, throw InterruptedException. 2034 * /ol 2035 */ 2036 public final void await() throws InterruptedException { 2037 if (Thread.interrupted()) 2038 throw new InterruptedException(); 2039 Node node addConditionWaiter(); 2040 int savedState fullyRelease(node); 2041 int interruptMode 0; 2042 while (!isOnSyncQueue(node)) { 2043 LockSupport.park(this); 2044 if ((interruptMode checkInterruptWhileWaiting(node)) ! 0) 2045 break; 2046 } 2047 if (acquireQueued(node, savedState) interruptMode ! THROW_IE) 2048 interruptMode REINTERRUPT; 2049 if (node.nextWaiter ! null) // clean up if cancelled 2050 unlinkCancelledWaiters(); 2051 if (interruptMode ! 0) 2052 reportInterruptAfterWait(interruptMode); 2053 } 2054 2055 /** 2056 * Implements timed condition wait. 2057 * ol 2058 * li If current thread is interrupted, throw InterruptedException. 2059 * li Save lock state returned by {link #getState}. 2060 * li Invoke {link #release} with 2061 * saved state as argument, throwing 2062 * IllegalMonitorStateException if it fails. 2063 * li Block until signalled, interrupted, or timed out. 2064 * li Reacquire by invoking specialized version of 2065 * {link #acquire} with saved state as argument. 2066 * li If interrupted while blocked in step 4, throw InterruptedException. 2067 * /ol 2068 */ 2069 public final long awaitNanos(long nanosTimeout) 2070 throws InterruptedException { 2071 if (Thread.interrupted()) 2072 throw new InterruptedException(); 2073 Node node addConditionWaiter(); 2074 int savedState fullyRelease(node); 2075 long lastTime System.nanoTime(); 2076 int interruptMode 0; 2077 while (!isOnSyncQueue(node)) { 2078 if (nanosTimeout 0L) { 2079 transferAfterCancelledWait(node); 2080 break; 2081 } 2082 LockSupport.parkNanos(this, nanosTimeout); 2083 if ((interruptMode checkInterruptWhileWaiting(node)) ! 0) 2084 break; 2085 2086 long now System.nanoTime(); 2087 nanosTimeout - now - lastTime; 2088 lastTime now; 2089 } 2090 if (acquireQueued(node, savedState) interruptMode ! THROW_IE) 2091 interruptMode REINTERRUPT; 2092 if (node.nextWaiter ! null) 2093 unlinkCancelledWaiters(); 2094 if (interruptMode ! 0) 2095 reportInterruptAfterWait(interruptMode); 2096 return nanosTimeout - (System.nanoTime() - lastTime); 2097 } 2098 2099 /** 2100 * Implements absolute timed condition wait. 2101 * ol 2102 * li If current thread is interrupted, throw InterruptedException. 2103 * li Save lock state returned by {link #getState}. 2104 * li Invoke {link #release} with 2105 * saved state as argument, throwing 2106 * IllegalMonitorStateException if it fails. 2107 * li Block until signalled, interrupted, or timed out. 2108 * li Reacquire by invoking specialized version of 2109 * {link #acquire} with saved state as argument. 2110 * li If interrupted while blocked in step 4, throw InterruptedException. 2111 * li If timed out while blocked in step 4, return false, else true. 2112 * /ol 2113 */ 2114 public final boolean awaitUntil(Date deadline) 2115 throws InterruptedException { 2116 if (deadline null) 2117 throw new NullPointerException(); 2118 long abstime deadline.getTime(); 2119 if (Thread.interrupted()) 2120 throw new InterruptedException(); 2121 Node node addConditionWaiter(); 2122 int savedState fullyRelease(node); 2123 boolean timedout false; 2124 int interruptMode 0; 2125 while (!isOnSyncQueue(node)) { 2126 if (System.currentTimeMillis() abstime) { 2127 timedout transferAfterCancelledWait(node); 2128 break; 2129 } 2130 LockSupport.parkUntil(this, abstime); 2131 if ((interruptMode checkInterruptWhileWaiting(node)) ! 0) 2132 break; 2133 } 2134 if (acquireQueued(node, savedState) interruptMode ! THROW_IE) 2135 interruptMode REINTERRUPT; 2136 if (node.nextWaiter ! null) 2137 unlinkCancelledWaiters(); 2138 if (interruptMode ! 0) 2139 reportInterruptAfterWait(interruptMode); 2140 return !timedout; 2141 } 2142 2143 /** 2144 * Implements timed condition wait. 2145 * ol 2146 * li If current thread is interrupted, throw InterruptedException. 2147 * li Save lock state returned by {link #getState}. 2148 * li Invoke {link #release} with 2149 * saved state as argument, throwing 2150 * IllegalMonitorStateException if it fails. 2151 * li Block until signalled, interrupted, or timed out. 2152 * li Reacquire by invoking specialized version of 2153 * {link #acquire} with saved state as argument. 2154 * li If interrupted while blocked in step 4, throw InterruptedException. 2155 * li If timed out while blocked in step 4, return false, else true. 2156 * /ol 2157 */ 2158 public final boolean await(long time, TimeUnit unit) 2159 throws InterruptedException { 2160 if (unit null) 2161 throw new NullPointerException(); 2162 long nanosTimeout unit.toNanos(time); 2163 if (Thread.interrupted()) 2164 throw new InterruptedException(); 2165 Node node addConditionWaiter(); 2166 int savedState fullyRelease(node); 2167 long lastTime System.nanoTime(); 2168 boolean timedout false; 2169 int interruptMode 0; 2170 while (!isOnSyncQueue(node)) { 2171 if (nanosTimeout 0L) { 2172 timedout transferAfterCancelledWait(node); 2173 break; 2174 } 2175 if (nanosTimeout spinForTimeoutThreshold) 2176 LockSupport.parkNanos(this, nanosTimeout); 2177 if ((interruptMode checkInterruptWhileWaiting(node)) ! 0) 2178 break; 2179 long now System.nanoTime(); 2180 nanosTimeout - now - lastTime; 2181 lastTime now; 2182 } 2183 if (acquireQueued(node, savedState) interruptMode ! THROW_IE) 2184 interruptMode REINTERRUPT; 2185 if (node.nextWaiter ! null) 2186 unlinkCancelledWaiters(); 2187 if (interruptMode ! 0) 2188 reportInterruptAfterWait(interruptMode); 2189 return !timedout; 2190 } 2191 2192 // support for instrumentation 2193 2194 /** 2195 * Returns true if this condition was created by the given 2196 * synchronization object. 2197 * 2198 * return {code true} if owned 2199 */ 2200 final boolean isOwnedBy(AbstractQueuedSynchronizer sync) { 2201 return sync AbstractQueuedSynchronizer.this; 2202 } 2203 2204 /** 2205 * Queries whether any threads are waiting on this condition. 2206 * Implements {link AbstractQueuedSynchronizer#hasWaiters}. 2207 * 2208 * return {code true} if there are any waiting threads 2209 * throws IllegalMonitorStateException if {link #isHeldExclusively} 2210 * returns {code false} 2211 */ 2212 protected final boolean hasWaiters() { 2213 if (!isHeldExclusively()) 2214 throw new IllegalMonitorStateException(); 2215 for (Node w firstWaiter; w ! null; w w.nextWaiter) { 2216 if (w.waitStatus Node.CONDITION) 2217 return true; 2218 } 2219 return false; 2220 } 2221 2222 /** 2223 * Returns an estimate of the number of threads waiting on 2224 * this condition. 2225 * Implements {link AbstractQueuedSynchronizer#getWaitQueueLength}. 2226 * 2227 * return the estimated number of waiting threads 2228 * throws IllegalMonitorStateException if {link #isHeldExclusively} 2229 * returns {code false} 2230 */ 2231 protected final int getWaitQueueLength() { 2232 if (!isHeldExclusively()) 2233 throw new IllegalMonitorStateException(); 2234 int n 0; 2235 for (Node w firstWaiter; w ! null; w w.nextWaiter) { 2236 if (w.waitStatus Node.CONDITION) 2237 n; 2238 } 2239 return n; 2240 } 2241 2242 /** 2243 * Returns a collection containing those threads that may be 2244 * waiting on this Condition. 2245 * Implements {link AbstractQueuedSynchronizer#getWaitingThreads}. 2246 * 2247 * return the collection of threads 2248 * throws IllegalMonitorStateException if {link #isHeldExclusively} 2249 * returns {code false} 2250 */ 2251 protected final CollectionThread getWaitingThreads() { 2252 if (!isHeldExclusively()) 2253 throw new IllegalMonitorStateException(); 2254 ArrayListThread list new ArrayListThread(); 2255 for (Node w firstWaiter; w ! null; w w.nextWaiter) { 2256 if (w.waitStatus Node.CONDITION) { 2257 Thread t w.thread; 2258 if (t ! null) 2259 list.add(t); 2260 } 2261 } 2262 return list; 2263 } 2264 } 2265 2266 /** 2267 * Setup to support compareAndSet. We need to natively implement 2268 * this here: For the sake of permitting future enhancements, we 2269 * cannot explicitly subclass AtomicInteger, which would be 2270 * efficient and useful otherwise. So, as the lesser of evils, we 2271 * natively implement using hotspot intrinsics API. And while we 2272 * are at it, we do the same for other CASable fields (which could 2273 * otherwise be done with atomic field updaters). 2274 */ 2275 private static final Unsafe unsafe Unsafe.getUnsafe(); 2276 private static final long stateOffset; 2277 private static final long headOffset; 2278 private static final long tailOffset; 2279 private static final long waitStatusOffset; 2280 private static final long nextOffset; 2281 2282 static { 2283 try { 2284 stateOffset unsafe.objectFieldOffset 2285 (AbstractQueuedSynchronizer.class.getDeclaredField(state)); 2286 headOffset unsafe.objectFieldOffset 2287 (AbstractQueuedSynchronizer.class.getDeclaredField(head)); 2288 tailOffset unsafe.objectFieldOffset 2289 (AbstractQueuedSynchronizer.class.getDeclaredField(tail)); 2290 waitStatusOffset unsafe.objectFieldOffset 2291 (Node.class.getDeclaredField(waitStatus)); 2292 nextOffset unsafe.objectFieldOffset 2293 (Node.class.getDeclaredField(next)); 2294 2295 } catch (Exception ex) { throw new Error(ex); } 2296 } 2297 2298 /** 2299 * CAS head field. Used only by enq. 2300 */ 2301 private final boolean compareAndSetHead(Node update) { 2302 return unsafe.compareAndSwapObject(this, headOffset, null, update); 2303 } 2304 2305 /** 2306 * CAS tail field. Used only by enq. 2307 */ 2308 private final boolean compareAndSetTail(Node expect, Node update) { 2309 return unsafe.compareAndSwapObject(this, tailOffset, expect, update); 2310 } 2311 2312 /** 2313 * CAS waitStatus field of a node. 2314 */ 2315 private static final boolean compareAndSetWaitStatus(Node node, 2316 int expect, 2317 int update) { 2318 return unsafe.compareAndSwapInt(node, waitStatusOffset, 2319 expect, update); 2320 } 2321 2322 /** 2323 * CAS next field of a node. 2324 */ 2325 private static final boolean compareAndSetNext(Node node, 2326 Node expect, 2327 Node update) { 2328 return unsafe.compareAndSwapObject(node, nextOffset, expect, update); 2329 } 2330 } 释放公平锁(基于JDK1.7.0_40) 1. unlock() unlock()在ReentrantLock.java中实现的源码如下 public void unlock() {sync.release(1); } 说明 unlock()是解锁函数它是通过AQS的release()函数来实现的。 在这里“1”的含义和“获取锁的函数acquire(1)的含义”一样它是设置“释放锁的状态”的参数。由于“公平锁”是可重入的所以对于同一个线程每释放锁一次锁的状态-1。 关于AQS, ReentrantLock 和 sync的关系如下 public class ReentrantLock implements Lock, java.io.Serializable {private final Sync sync;abstract static class Sync extends AbstractQueuedSynchronizer {...}... } 从中我们发现sync是ReentrantLock.java中的成员对象而Sync是AQS的子类。 2. release() release()在AQS中实现的源码如下 public final boolean release(int arg) {if (tryRelease(arg)) {Node h head;if (h ! null h.waitStatus ! 0)unparkSuccessor(h);return true;}return false; } 说明 release()会先调用tryRelease()来尝试释放当前线程锁持有的锁。成功的话则唤醒后继等待线程并返回true。否则直接返回false。 3. tryRelease() tryRelease()在ReentrantLock.java的Sync类中实现源码如下 protected final boolean tryRelease(int releases) {// c是本次释放锁之后的状态int c getState() - releases;// 如果“当前线程”不是“锁的持有者”则抛出异常if (Thread.currentThread() ! getExclusiveOwnerThread())throw new IllegalMonitorStateException();boolean free false;// 如果“锁”已经被当前线程彻底释放则设置“锁”的持有者为null即锁是可获取状态。if (c 0) {free true;setExclusiveOwnerThread(null);}// 设置当前线程的锁的状态。setState(c);return free; } 说明 tryRelease()的作用是尝试释放锁。 (01) 如果“当前线程”不是“锁的持有者”则抛出异常。 (02) 如果“当前线程”在本次释放锁操作之后对锁的拥有状态是0(即当前线程彻底释放该“锁”)则设置“锁”的持有者为null即锁是可获取状态。同时更新当前线程的锁的状态为0。 getState(), setState()在前一章已经介绍过这里不再说明。 getExclusiveOwnerThread(), setExclusiveOwnerThread()在AQS的父类AbstractOwnableSynchronizer.java中定义源码如下 public abstract class AbstractOwnableSynchronizerimplements java.io.Serializable {// “锁”的持有线程private transient Thread exclusiveOwnerThread;// 设置“锁的持有线程”为tprotected final void setExclusiveOwnerThread(Thread t) {exclusiveOwnerThread t;}// 获取“锁的持有线程”protected final Thread getExclusiveOwnerThread() {return exclusiveOwnerThread;}... } 4. unparkSuccessor() 在release()中“当前线程”释放锁成功的话会唤醒当前线程的后继线程。 根据CLH队列的FIFO规则“当前线程”(即已经获取锁的线程)肯定是head如果CLH队列非空的话则唤醒锁的下一个等待线程。 下面看看unparkSuccessor()的源码它在AQS中实现。 private void unparkSuccessor(Node node) {// 获取当前线程的状态int ws node.waitStatus;// 如果状态0则设置状态0if (ws 0)compareAndSetWaitStatus(node, ws, 0);//获取当前节点的“有效的后继节点”无效的话则通过for循环进行获取。// 这里的有效是指“后继节点对应的线程状态0”Node s node.next;if (s null || s.waitStatus 0) {s null;for (Node t tail; t ! null t ! node; t t.prev)if (t.waitStatus 0)s t;}// 唤醒“后继节点对应的线程”if (s ! null)LockSupport.unpark(s.thread); } 说明 unparkSuccessor()的作用是“唤醒当前线程的后继线程”。后继线程被唤醒之后就可以获取该锁并恢复运行了。 关于node.waitStatus的说明请参考“上一章关于Node类的介绍”。 总结 “释放锁”的过程相对“获取锁”的过程比较简单。释放锁时主要进行的操作是更新当前线程对应的锁的状态。如果当前线程对锁已经彻底释放则设置“锁”的持有线程为null设置当前线程的状态为空然后唤醒后继线程。 概要 前面一章我们学习了“公平锁”获取锁的详细流程这里我们再来看看“公平锁”释放锁的过程。内容包括 参考代码 释放公平锁(基于JDK1.7.0_40) “公平锁”的获取过程请参考“Java多线程系列--“JUC锁”03之 公平锁(一)”锁的使用示例请参考“Java多线程系列--“JUC锁”02之 互斥锁ReentrantLock”。 注意 (01) 这里是以“公平锁”来进行说明。 (02) 关于本章的术语如“AQS”“CAS函数”“CLH队列”“公平锁”“非公平锁”“独占锁”“共享锁”等内容请参考Java多线程系列--“JUC锁”03之 公平锁(一)的基本概念。 转载请注明出处http://www.cnblogs.com/skywang12345/p/3496609.html    参考代码 下面给出Java1.7.0_40版本中ReentrantLock和AQS的源码仅供参考 ReentranLock.java 1 /*2 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14 *15 *16 *17 *18 *19 *20 *21 *22 *23 */24 25 /*26 *27 *28 *29 *30 *31 * Written by Doug Lea with assistance from members of JCP JSR-16632 * Expert Group and released to the public domain, as explained at33 * http://creativecommons.org/publicdomain/zero/1.0/34 */35 36 package java.util.concurrent.locks;37 import java.util.*;38 import java.util.concurrent.*;39 import java.util.concurrent.atomic.*;40 41 /**42 * A reentrant mutual exclusion {link Lock} with the same basic43 * behavior and semantics as the implicit monitor lock accessed using44 * {code synchronized} methods and statements, but with extended45 * capabilities.46 *47 * pA {code ReentrantLock} is emowned/em by the thread last48 * successfully locking, but not yet unlocking it. A thread invoking49 * {code lock} will return, successfully acquiring the lock, when50 * the lock is not owned by another thread. The method will return51 * immediately if the current thread already owns the lock. This can52 * be checked using methods {link #isHeldByCurrentThread}, and {link53 * #getHoldCount}.54 *55 * pThe constructor for this class accepts an optional56 * emfairness/em parameter. When set {code true}, under57 * contention, locks favor granting access to the longest-waiting58 * thread. Otherwise this lock does not guarantee any particular59 * access order. Programs using fair locks accessed by many threads60 * may display lower overall throughput (i.e., are slower; often much61 * slower) than those using the default setting, but have smaller62 * variances in times to obtain locks and guarantee lack of63 * starvation. Note however, that fairness of locks does not guarantee64 * fairness of thread scheduling. Thus, one of many threads using a65 * fair lock may obtain it multiple times in succession while other66 * active threads are not progressing and not currently holding the67 * lock.68 * Also note that the untimed {link #tryLock() tryLock} method does not69 * honor the fairness setting. It will succeed if the lock70 * is available even if other threads are waiting.71 *72 * pIt is recommended practice to emalways/em immediately73 * follow a call to {code lock} with a {code try} block, most74 * typically in a before/after construction such as:75 *76 * pre77 * class X {78 * private final ReentrantLock lock new ReentrantLock();79 * // ...80 *81 * public void m() {82 * lock.lock(); // block until condition holds83 * try {84 * // ... method body85 * } finally {86 * lock.unlock()87 * }88 * }89 * }90 * /pre91 *92 * pIn addition to implementing the {link Lock} interface, this93 * class defines methods {code isLocked} and94 * {code getLockQueueLength}, as well as some associated95 * {code protected} access methods that may be useful for96 * instrumentation and monitoring.97 *98 * pSerialization of this class behaves in the same way as built-in99 * locks: a deserialized lock is in the unlocked state, regardless of 100 * its state when serialized. 101 * 102 * pThis lock supports a maximum of 2147483647 recursive locks by 103 * the same thread. Attempts to exceed this limit result in 104 * {link Error} throws from locking methods. 105 * 106 * since 1.5 107 * author Doug Lea 108 */ 109 public class ReentrantLock implements Lock, java.io.Serializable { 110 private static final long serialVersionUID 7373984872572414699L; 111 /** Synchronizer providing all implementation mechanics */ 112 private final Sync sync; 113 114 /** 115 * Base of synchronization control for this lock. Subclassed 116 * into fair and nonfair versions below. Uses AQS state to 117 * represent the number of holds on the lock. 118 */ 119 abstract static class Sync extends AbstractQueuedSynchronizer { 120 private static final long serialVersionUID -5179523762034025860L; 121 122 /** 123 * Performs {link Lock#lock}. The main reason for subclassing 124 * is to allow fast path for nonfair version. 125 */ 126 abstract void lock(); 127 128 /** 129 * Performs non-fair tryLock. tryAcquire is 130 * implemented in subclasses, but both need nonfair 131 * try for trylock method. 132 */ 133 final boolean nonfairTryAcquire(int acquires) { 134 final Thread current Thread.currentThread(); 135 int c getState(); 136 if (c 0) { 137 if (compareAndSetState(0, acquires)) { 138 setExclusiveOwnerThread(current); 139 return true; 140 } 141 } 142 else if (current getExclusiveOwnerThread()) { 143 int nextc c acquires; 144 if (nextc 0) // overflow 145 throw new Error(Maximum lock count exceeded); 146 setState(nextc); 147 return true; 148 } 149 return false; 150 } 151 152 protected final boolean tryRelease(int releases) { 153 int c getState() - releases; 154 if (Thread.currentThread() ! getExclusiveOwnerThread()) 155 throw new IllegalMonitorStateException(); 156 boolean free false; 157 if (c 0) { 158 free true; 159 setExclusiveOwnerThread(null); 160 } 161 setState(c); 162 return free; 163 } 164 165 protected final boolean isHeldExclusively() { 166 // While we must in general read state before owner, 167 // we dont need to do so to check if current thread is owner 168 return getExclusiveOwnerThread() Thread.currentThread(); 169 } 170 171 final ConditionObject newCondition() { 172 return new ConditionObject(); 173 } 174 175 // Methods relayed from outer class 176 177 final Thread getOwner() { 178 return getState() 0 ? null : getExclusiveOwnerThread(); 179 } 180 181 final int getHoldCount() { 182 return isHeldExclusively() ? getState() : 0; 183 } 184 185 final boolean isLocked() { 186 return getState() ! 0; 187 } 188 189 /** 190 * Reconstitutes this lock instance from a stream. 191 * param s the stream 192 */ 193 private void readObject(java.io.ObjectInputStream s) 194 throws java.io.IOException, ClassNotFoundException { 195 s.defaultReadObject(); 196 setState(0); // reset to unlocked state 197 } 198 } 199 200 /** 201 * Sync object for non-fair locks 202 */ 203 static final class NonfairSync extends Sync { 204 private static final long serialVersionUID 7316153563782823691L; 205 206 /** 207 * Performs lock. Try immediate barge, backing up to normal 208 * acquire on failure. 209 */ 210 final void lock() { 211 if (compareAndSetState(0, 1)) 212 setExclusiveOwnerThread(Thread.currentThread()); 213 else 214 acquire(1); 215 } 216 217 protected final boolean tryAcquire(int acquires) { 218 return nonfairTryAcquire(acquires); 219 } 220 } 221 222 /** 223 * Sync object for fair locks 224 */ 225 static final class FairSync extends Sync { 226 private static final long serialVersionUID -3000897897090466540L; 227 228 final void lock() { 229 acquire(1); 230 } 231 232 /** 233 * Fair version of tryAcquire. Dont grant access unless 234 * recursive call or no waiters or is first. 235 */ 236 protected final boolean tryAcquire(int acquires) { 237 final Thread current Thread.currentThread(); 238 int c getState(); 239 if (c 0) { 240 if (!hasQueuedPredecessors() 241 compareAndSetState(0, acquires)) { 242 setExclusiveOwnerThread(current); 243 return true; 244 } 245 } 246 else if (current getExclusiveOwnerThread()) { 247 int nextc c acquires; 248 if (nextc 0) 249 throw new Error(Maximum lock count exceeded); 250 setState(nextc); 251 return true; 252 } 253 return false; 254 } 255 } 256 257 /** 258 * Creates an instance of {code ReentrantLock}. 259 * This is equivalent to using {code ReentrantLock(false)}. 260 */ 261 public ReentrantLock() { 262 sync new NonfairSync(); 263 } 264 265 /** 266 * Creates an instance of {code ReentrantLock} with the 267 * given fairness policy. 268 * 269 * param fair {code true} if this lock should use a fair ordering policy 270 */ 271 public ReentrantLock(boolean fair) { 272 sync fair ? new FairSync() : new NonfairSync(); 273 } 274 275 /** 276 * Acquires the lock. 277 * 278 * pAcquires the lock if it is not held by another thread and returns 279 * immediately, setting the lock hold count to one. 280 * 281 * pIf the current thread already holds the lock then the hold 282 * count is incremented by one and the method returns immediately. 283 * 284 * pIf the lock is held by another thread then the 285 * current thread becomes disabled for thread scheduling 286 * purposes and lies dormant until the lock has been acquired, 287 * at which time the lock hold count is set to one. 288 */ 289 public void lock() { 290 sync.lock(); 291 } 292 293 /** 294 * Acquires the lock unless the current thread is 295 * {linkplain Thread#interrupt interrupted}. 296 * 297 * pAcquires the lock if it is not held by another thread and returns 298 * immediately, setting the lock hold count to one. 299 * 300 * pIf the current thread already holds this lock then the hold count 301 * is incremented by one and the method returns immediately. 302 * 303 * pIf the lock is held by another thread then the 304 * current thread becomes disabled for thread scheduling 305 * purposes and lies dormant until one of two things happens: 306 * 307 * ul 308 * 309 * liThe lock is acquired by the current thread; or 310 * 311 * liSome other thread {linkplain Thread#interrupt interrupts} the 312 * current thread. 313 * 314 * /ul 315 * 316 * pIf the lock is acquired by the current thread then the lock hold 317 * count is set to one. 318 * 319 * pIf the current thread: 320 * 321 * ul 322 * 323 * lihas its interrupted status set on entry to this method; or 324 * 325 * liis {linkplain Thread#interrupt interrupted} while acquiring 326 * the lock, 327 * 328 * /ul 329 * 330 * then {link InterruptedException} is thrown and the current threads 331 * interrupted status is cleared. 332 * 333 * pIn this implementation, as this method is an explicit 334 * interruption point, preference is given to responding to the 335 * interrupt over normal or reentrant acquisition of the lock. 336 * 337 * throws InterruptedException if the current thread is interrupted 338 */ 339 public void lockInterruptibly() throws InterruptedException { 340 sync.acquireInterruptibly(1); 341 } 342 343 /** 344 * Acquires the lock only if it is not held by another thread at the time 345 * of invocation. 346 * 347 * pAcquires the lock if it is not held by another thread and 348 * returns immediately with the value {code true}, setting the 349 * lock hold count to one. Even when this lock has been set to use a 350 * fair ordering policy, a call to {code tryLock()} emwill/em 351 * immediately acquire the lock if it is available, whether or not 352 * other threads are currently waiting for the lock. 353 * This quot;bargingquot; behavior can be useful in certain 354 * circumstances, even though it breaks fairness. If you want to honor 355 * the fairness setting for this lock, then use 356 * {link #tryLock(long, TimeUnit) tryLock(0, TimeUnit.SECONDS) } 357 * which is almost equivalent (it also detects interruption). 358 * 359 * p If the current thread already holds this lock then the hold 360 * count is incremented by one and the method returns {code true}. 361 * 362 * pIf the lock is held by another thread then this method will return 363 * immediately with the value {code false}. 364 * 365 * return {code true} if the lock was free and was acquired by the 366 * current thread, or the lock was already held by the current 367 * thread; and {code false} otherwise 368 */ 369 public boolean tryLock() { 370 return sync.nonfairTryAcquire(1); 371 } 372 373 /** 374 * Acquires the lock if it is not held by another thread within the given 375 * waiting time and the current thread has not been 376 * {linkplain Thread#interrupt interrupted}. 377 * 378 * pAcquires the lock if it is not held by another thread and returns 379 * immediately with the value {code true}, setting the lock hold count 380 * to one. If this lock has been set to use a fair ordering policy then 381 * an available lock emwill not/em be acquired if any other threads 382 * are waiting for the lock. This is in contrast to the {link #tryLock()} 383 * method. If you want a timed {code tryLock} that does permit barging on 384 * a fair lock then combine the timed and un-timed forms together: 385 * 386 * preif (lock.tryLock() || lock.tryLock(timeout, unit) ) { ... } 387 * /pre 388 * 389 * pIf the current thread 390 * already holds this lock then the hold count is incremented by one and 391 * the method returns {code true}. 392 * 393 * pIf the lock is held by another thread then the 394 * current thread becomes disabled for thread scheduling 395 * purposes and lies dormant until one of three things happens: 396 * 397 * ul 398 * 399 * liThe lock is acquired by the current thread; or 400 * 401 * liSome other thread {linkplain Thread#interrupt interrupts} 402 * the current thread; or 403 * 404 * liThe specified waiting time elapses 405 * 406 * /ul 407 * 408 * pIf the lock is acquired then the value {code true} is returned and 409 * the lock hold count is set to one. 410 * 411 * pIf the current thread: 412 * 413 * ul 414 * 415 * lihas its interrupted status set on entry to this method; or 416 * 417 * liis {linkplain Thread#interrupt interrupted} while 418 * acquiring the lock, 419 * 420 * /ul 421 * then {link InterruptedException} is thrown and the current threads 422 * interrupted status is cleared. 423 * 424 * pIf the specified waiting time elapses then the value {code false} 425 * is returned. If the time is less than or equal to zero, the method 426 * will not wait at all. 427 * 428 * pIn this implementation, as this method is an explicit 429 * interruption point, preference is given to responding to the 430 * interrupt over normal or reentrant acquisition of the lock, and 431 * over reporting the elapse of the waiting time. 432 * 433 * param timeout the time to wait for the lock 434 * param unit the time unit of the timeout argument 435 * return {code true} if the lock was free and was acquired by the 436 * current thread, or the lock was already held by the current 437 * thread; and {code false} if the waiting time elapsed before 438 * the lock could be acquired 439 * throws InterruptedException if the current thread is interrupted 440 * throws NullPointerException if the time unit is null 441 * 442 */ 443 public boolean tryLock(long timeout, TimeUnit unit) 444 throws InterruptedException { 445 return sync.tryAcquireNanos(1, unit.toNanos(timeout)); 446 } 447 448 /** 449 * Attempts to release this lock. 450 * 451 * pIf the current thread is the holder of this lock then the hold 452 * count is decremented. If the hold count is now zero then the lock 453 * is released. If the current thread is not the holder of this 454 * lock then {link IllegalMonitorStateException} is thrown. 455 * 456 * throws IllegalMonitorStateException if the current thread does not 457 * hold this lock 458 */ 459 public void unlock() { 460 sync.release(1); 461 } 462 463 /** 464 * Returns a {link Condition} instance for use with this 465 * {link Lock} instance. 466 * 467 * pThe returned {link Condition} instance supports the same 468 * usages as do the {link Object} monitor methods ({link 469 * Object#wait() wait}, {link Object#notify notify}, and {link 470 * Object#notifyAll notifyAll}) when used with the built-in 471 * monitor lock. 472 * 473 * ul 474 * 475 * liIf this lock is not held when any of the {link Condition} 476 * {linkplain Condition#await() waiting} or {linkplain 477 * Condition#signal signalling} methods are called, then an {link 478 * IllegalMonitorStateException} is thrown. 479 * 480 * liWhen the condition {linkplain Condition#await() waiting} 481 * methods are called the lock is released and, before they 482 * return, the lock is reacquired and the lock hold count restored 483 * to what it was when the method was called. 484 * 485 * liIf a thread is {linkplain Thread#interrupt interrupted} 486 * while waiting then the wait will terminate, an {link 487 * InterruptedException} will be thrown, and the threads 488 * interrupted status will be cleared. 489 * 490 * li Waiting threads are signalled in FIFO order. 491 * 492 * liThe ordering of lock reacquisition for threads returning 493 * from waiting methods is the same as for threads initially 494 * acquiring the lock, which is in the default case not specified, 495 * but for emfair/em locks favors those threads that have been 496 * waiting the longest. 497 * 498 * /ul 499 * 500 * return the Condition object 501 */ 502 public Condition newCondition() { 503 return sync.newCondition(); 504 } 505 506 /** 507 * Queries the number of holds on this lock by the current thread. 508 * 509 * pA thread has a hold on a lock for each lock action that is not 510 * matched by an unlock action. 511 * 512 * pThe hold count information is typically only used for testing and 513 * debugging purposes. For example, if a certain section of code should 514 * not be entered with the lock already held then we can assert that 515 * fact: 516 * 517 * pre 518 * class X { 519 * ReentrantLock lock new ReentrantLock(); 520 * // ... 521 * public void m() { 522 * assert lock.getHoldCount() 0; 523 * lock.lock(); 524 * try { 525 * // ... method body 526 * } finally { 527 * lock.unlock(); 528 * } 529 * } 530 * } 531 * /pre 532 * 533 * return the number of holds on this lock by the current thread, 534 * or zero if this lock is not held by the current thread 535 */ 536 public int getHoldCount() { 537 return sync.getHoldCount(); 538 } 539 540 /** 541 * Queries if this lock is held by the current thread. 542 * 543 * pAnalogous to the {link Thread#holdsLock} method for built-in 544 * monitor locks, this method is typically used for debugging and 545 * testing. For example, a method that should only be called while 546 * a lock is held can assert that this is the case: 547 * 548 * pre 549 * class X { 550 * ReentrantLock lock new ReentrantLock(); 551 * // ... 552 * 553 * public void m() { 554 * assert lock.isHeldByCurrentThread(); 555 * // ... method body 556 * } 557 * } 558 * /pre 559 * 560 * pIt can also be used to ensure that a reentrant lock is used 561 * in a non-reentrant manner, for example: 562 * 563 * pre 564 * class X { 565 * ReentrantLock lock new ReentrantLock(); 566 * // ... 567 * 568 * public void m() { 569 * assert !lock.isHeldByCurrentThread(); 570 * lock.lock(); 571 * try { 572 * // ... method body 573 * } finally { 574 * lock.unlock(); 575 * } 576 * } 577 * } 578 * /pre 579 * 580 * return {code true} if current thread holds this lock and 581 * {code false} otherwise 582 */ 583 public boolean isHeldByCurrentThread() { 584 return sync.isHeldExclusively(); 585 } 586 587 /** 588 * Queries if this lock is held by any thread. This method is 589 * designed for use in monitoring of the system state, 590 * not for synchronization control. 591 * 592 * return {code true} if any thread holds this lock and 593 * {code false} otherwise 594 */ 595 public boolean isLocked() { 596 return sync.isLocked(); 597 } 598 599 /** 600 * Returns {code true} if this lock has fairness set true. 601 * 602 * return {code true} if this lock has fairness set true 603 */ 604 public final boolean isFair() { 605 return sync instanceof FairSync; 606 } 607 608 /** 609 * Returns the thread that currently owns this lock, or 610 * {code null} if not owned. When this method is called by a 611 * thread that is not the owner, the return value reflects a 612 * best-effort approximation of current lock status. For example, 613 * the owner may be momentarily {code null} even if there are 614 * threads trying to acquire the lock but have not yet done so. 615 * This method is designed to facilitate construction of 616 * subclasses that provide more extensive lock monitoring 617 * facilities. 618 * 619 * return the owner, or {code null} if not owned 620 */ 621 protected Thread getOwner() { 622 return sync.getOwner(); 623 } 624 625 /** 626 * Queries whether any threads are waiting to acquire this lock. Note that 627 * because cancellations may occur at any time, a {code true} 628 * return does not guarantee that any other thread will ever 629 * acquire this lock. This method is designed primarily for use in 630 * monitoring of the system state. 631 * 632 * return {code true} if there may be other threads waiting to 633 * acquire the lock 634 */ 635 public final boolean hasQueuedThreads() { 636 return sync.hasQueuedThreads(); 637 } 638 639 640 /** 641 * Queries whether the given thread is waiting to acquire this 642 * lock. Note that because cancellations may occur at any time, a 643 * {code true} return does not guarantee that this thread 644 * will ever acquire this lock. This method is designed primarily for use 645 * in monitoring of the system state. 646 * 647 * param thread the thread 648 * return {code true} if the given thread is queued waiting for this lock 649 * throws NullPointerException if the thread is null 650 */ 651 public final boolean hasQueuedThread(Thread thread) { 652 return sync.isQueued(thread); 653 } 654 655 656 /** 657 * Returns an estimate of the number of threads waiting to 658 * acquire this lock. The value is only an estimate because the number of 659 * threads may change dynamically while this method traverses 660 * internal data structures. This method is designed for use in 661 * monitoring of the system state, not for synchronization 662 * control. 663 * 664 * return the estimated number of threads waiting for this lock 665 */ 666 public final int getQueueLength() { 667 return sync.getQueueLength(); 668 } 669 670 /** 671 * Returns a collection containing threads that may be waiting to 672 * acquire this lock. Because the actual set of threads may change 673 * dynamically while constructing this result, the returned 674 * collection is only a best-effort estimate. The elements of the 675 * returned collection are in no particular order. This method is 676 * designed to facilitate construction of subclasses that provide 677 * more extensive monitoring facilities. 678 * 679 * return the collection of threads 680 */ 681 protected CollectionThread getQueuedThreads() { 682 return sync.getQueuedThreads(); 683 } 684 685 /** 686 * Queries whether any threads are waiting on the given condition 687 * associated with this lock. Note that because timeouts and 688 * interrupts may occur at any time, a {code true} return does 689 * not guarantee that a future {code signal} will awaken any 690 * threads. This method is designed primarily for use in 691 * monitoring of the system state. 692 * 693 * param condition the condition 694 * return {code true} if there are any waiting threads 695 * throws IllegalMonitorStateException if this lock is not held 696 * throws IllegalArgumentException if the given condition is 697 * not associated with this lock 698 * throws NullPointerException if the condition is null 699 */ 700 public boolean hasWaiters(Condition condition) { 701 if (condition null) 702 throw new NullPointerException(); 703 if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject)) 704 throw new IllegalArgumentException(not owner); 705 return sync.hasWaiters((AbstractQueuedSynchronizer.ConditionObject)condition); 706 } 707 708 /** 709 * Returns an estimate of the number of threads waiting on the 710 * given condition associated with this lock. Note that because 711 * timeouts and interrupts may occur at any time, the estimate 712 * serves only as an upper bound on the actual number of waiters. 713 * This method is designed for use in monitoring of the system 714 * state, not for synchronization control. 715 * 716 * param condition the condition 717 * return the estimated number of waiting threads 718 * throws IllegalMonitorStateException if this lock is not held 719 * throws IllegalArgumentException if the given condition is 720 * not associated with this lock 721 * throws NullPointerException if the condition is null 722 */ 723 public int getWaitQueueLength(Condition condition) { 724 if (condition null) 725 throw new NullPointerException(); 726 if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject)) 727 throw new IllegalArgumentException(not owner); 728 return sync.getWaitQueueLength((AbstractQueuedSynchronizer.ConditionObject)condition); 729 } 730 731 /** 732 * Returns a collection containing those threads that may be 733 * waiting on the given condition associated with this lock. 734 * Because the actual set of threads may change dynamically while 735 * constructing this result, the returned collection is only a 736 * best-effort estimate. The elements of the returned collection 737 * are in no particular order. This method is designed to 738 * facilitate construction of subclasses that provide more 739 * extensive condition monitoring facilities. 740 * 741 * param condition the condition 742 * return the collection of threads 743 * throws IllegalMonitorStateException if this lock is not held 744 * throws IllegalArgumentException if the given condition is 745 * not associated with this lock 746 * throws NullPointerException if the condition is null 747 */ 748 protected CollectionThread getWaitingThreads(Condition condition) { 749 if (condition null) 750 throw new NullPointerException(); 751 if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject)) 752 throw new IllegalArgumentException(not owner); 753 return sync.getWaitingThreads((AbstractQueuedSynchronizer.ConditionObject)condition); 754 } 755 756 /** 757 * Returns a string identifying this lock, as well as its lock state. 758 * The state, in brackets, includes either the String {code Unlocked} 759 * or the String {code Locked by} followed by the 760 * {linkplain Thread#getName name} of the owning thread. 761 * 762 * return a string identifying this lock, as well as its lock state 763 */ 764 public String toString() { 765 Thread o sync.getOwner(); 766 return super.toString() ((o null) ? 767 [Unlocked] : 768 [Locked by thread o.getName() ]); 769 } 770 } AQS(AbstractQueuedSynchronizer.java) 1 /*2 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14 *15 *16 *17 *18 *19 *20 *21 *22 *23 */24 25 /*26 *27 *28 *29 *30 *31 * Written by Doug Lea with assistance from members of JCP JSR-16632 * Expert Group and released to the public domain, as explained at33 * http://creativecommons.org/publicdomain/zero/1.0/34 */35 36 package java.util.concurrent.locks;37 import java.util.*;38 import java.util.concurrent.*;39 import java.util.concurrent.atomic.*;40 import sun.misc.Unsafe;41 42 /**43 * Provides a framework for implementing blocking locks and related44 * synchronizers (semaphores, events, etc) that rely on45 * first-in-first-out (FIFO) wait queues. This class is designed to46 * be a useful basis for most kinds of synchronizers that rely on a47 * single atomic ttint/tt value to represent state. Subclasses48 * must define the protected methods that change this state, and which49 * define what that state means in terms of this object being acquired50 * or released. Given these, the other methods in this class carry51 * out all queuing and blocking mechanics. Subclasses can maintain52 * other state fields, but only the atomically updated ttint/tt53 * value manipulated using methods {link #getState}, {link54 * #setState} and {link #compareAndSetState} is tracked with respect55 * to synchronization.56 *57 * pSubclasses should be defined as non-public internal helper58 * classes that are used to implement the synchronization properties59 * of their enclosing class. Class60 * ttAbstractQueuedSynchronizer/tt does not implement any61 * synchronization interface. Instead it defines methods such as62 * {link #acquireInterruptibly} that can be invoked as63 * appropriate by concrete locks and related synchronizers to64 * implement their public methods.65 *66 * pThis class supports either or both a default emexclusive/em67 * mode and a emshared/em mode. When acquired in exclusive mode,68 * attempted acquires by other threads cannot succeed. Shared mode69 * acquires by multiple threads may (but need not) succeed. This class70 * does not quot;understandquot; these differences except in the71 * mechanical sense that when a shared mode acquire succeeds, the next72 * waiting thread (if one exists) must also determine whether it can73 * acquire as well. Threads waiting in the different modes share the74 * same FIFO queue. Usually, implementation subclasses support only75 * one of these modes, but both can come into play for example in a76 * {link ReadWriteLock}. Subclasses that support only exclusive or77 * only shared modes need not define the methods supporting the unused mode.78 *79 * pThis class defines a nested {link ConditionObject} class that80 * can be used as a {link Condition} implementation by subclasses81 * supporting exclusive mode for which method {link82 * #isHeldExclusively} reports whether synchronization is exclusively83 * held with respect to the current thread, method {link #release}84 * invoked with the current {link #getState} value fully releases85 * this object, and {link #acquire}, given this saved state value,86 * eventually restores this object to its previous acquired state. No87 * ttAbstractQueuedSynchronizer/tt method otherwise creates such a88 * condition, so if this constraint cannot be met, do not use it. The89 * behavior of {link ConditionObject} depends of course on the90 * semantics of its synchronizer implementation.91 *92 * pThis class provides inspection, instrumentation, and monitoring93 * methods for the internal queue, as well as similar methods for94 * condition objects. These can be exported as desired into classes95 * using an ttAbstractQueuedSynchronizer/tt for their96 * synchronization mechanics.97 *98 * pSerialization of this class stores only the underlying atomic99 * integer maintaining state, so deserialized objects have empty100 * thread queues. Typical subclasses requiring serializability will101 * define a ttreadObject/tt method that restores this to a known102 * initial state upon deserialization.103 *104 * h3Usage/h3105 *106 * pTo use this class as the basis of a synchronizer, redefine the107 * following methods, as applicable, by inspecting and/or modifying108 * the synchronization state using {link #getState}, {link109 * #setState} and/or {link #compareAndSetState}:110 *111 * ul112 * li {link #tryAcquire}113 * li {link #tryRelease}114 * li {link #tryAcquireShared}115 * li {link #tryReleaseShared}116 * li {link #isHeldExclusively}117 */ul118 *119 * Each of these methods by default throws {link120 * UnsupportedOperationException}. Implementations of these methods121 * must be internally thread-safe, and should in general be short and122 * not block. Defining these methods is the emonly/em supported123 * means of using this class. All other methods are declared124 * ttfinal/tt because they cannot be independently varied.125 *126 * pYou may also find the inherited methods from {link127 * AbstractOwnableSynchronizer} useful to keep track of the thread128 * owning an exclusive synchronizer. You are encouraged to use them129 * -- this enables monitoring and diagnostic tools to assist users in130 * determining which threads hold locks.131 *132 * pEven though this class is based on an internal FIFO queue, it133 * does not automatically enforce FIFO acquisition policies. The core134 * of exclusive synchronization takes the form:135 *136 * pre137 * Acquire:138 * while (!tryAcquire(arg)) {139 * emenqueue thread if it is not already queued/em;140 * empossibly block current thread/em;141 * }142 *143 * Release:144 * if (tryRelease(arg))145 * emunblock the first queued thread/em;146 * /pre147 *148 * (Shared mode is similar but may involve cascading signals.)149 *150 * pa namebargingBecause checks in acquire are invoked before151 * enqueuing, a newly acquiring thread may embarge/em ahead of152 * others that are blocked and queued. However, you can, if desired,153 * define tttryAcquire/tt and/or tttryAcquireShared/tt to154 * disable barging by internally invoking one or more of the inspection155 * methods, thereby providing a emfair/em FIFO acquisition order.156 * In particular, most fair synchronizers can define tttryAcquire/tt157 * to return ttfalse/tt if {link #hasQueuedPredecessors} (a method158 * specifically designed to be used by fair synchronizers) returns159 * tttrue/tt. Other variations are possible.160 *161 * pThroughput and scalability are generally highest for the162 * default barging (also known as emgreedy/em,163 * emrenouncement/em, and emconvoy-avoidance/em) strategy.164 * While this is not guaranteed to be fair or starvation-free, earlier165 * queued threads are allowed to recontend before later queued166 * threads, and each recontention has an unbiased chance to succeed167 * against incoming threads. Also, while acquires do not168 * quot;spinquot; in the usual sense, they may perform multiple169 * invocations of tttryAcquire/tt interspersed with other170 * computations before blocking. This gives most of the benefits of171 * spins when exclusive synchronization is only briefly held, without172 * most of the liabilities when it isnt. If so desired, you can173 * augment this by preceding calls to acquire methods with174 * fast-path checks, possibly prechecking {link #hasContended}175 * and/or {link #hasQueuedThreads} to only do so if the synchronizer176 * is likely not to be contended.177 *178 * pThis class provides an efficient and scalable basis for179 * synchronization in part by specializing its range of use to180 * synchronizers that can rely on ttint/tt state, acquire, and181 * release parameters, and an internal FIFO wait queue. When this does182 * not suffice, you can build synchronizers from a lower level using183 * {link java.util.concurrent.atomic atomic} classes, your own custom184 * {link java.util.Queue} classes, and {link LockSupport} blocking185 * support.186 *187 * h3Usage Examples/h3188 *189 * pHere is a non-reentrant mutual exclusion lock class that uses190 * the value zero to represent the unlocked state, and one to191 * represent the locked state. While a non-reentrant lock192 * does not strictly require recording of the current owner193 * thread, this class does so anyway to make usage easier to monitor.194 * It also supports conditions and exposes195 * one of the instrumentation methods:196 *197 * pre198 * class Mutex implements Lock, java.io.Serializable {199 *200 * // Our internal helper class201 * private static class Sync extends AbstractQueuedSynchronizer {202 * // Report whether in locked state203 * protected boolean isHeldExclusively() {204 * return getState() 1;205 * }206 *207 * // Acquire the lock if state is zero208 * public boolean tryAcquire(int acquires) {209 * assert acquires 1; // Otherwise unused210 * if (compareAndSetState(0, 1)) {211 * setExclusiveOwnerThread(Thread.currentThread());212 * return true;213 * }214 * return false;215 * }216 *217 * // Release the lock by setting state to zero218 * protected boolean tryRelease(int releases) {219 * assert releases 1; // Otherwise unused220 * if (getState() 0) throw new IllegalMonitorStateException();221 * setExclusiveOwnerThread(null);222 * setState(0);223 * return true;224 * }225 *226 * // Provide a Condition227 * Condition newCondition() { return new ConditionObject(); }228 *229 * // Deserialize properly230 * private void readObject(ObjectInputStream s)231 * throws IOException, ClassNotFoundException {232 * s.defaultReadObject();233 * setState(0); // reset to unlocked state234 * }235 * }236 *237 * // The sync object does all the hard work. We just forward to it.238 * private final Sync sync new Sync();239 *240 * public void lock() { sync.acquire(1); }241 * public boolean tryLock() { return sync.tryAcquire(1); }242 * public void unlock() { sync.release(1); }243 * public Condition newCondition() { return sync.newCondition(); }244 * public boolean isLocked() { return sync.isHeldExclusively(); }245 * public boolean hasQueuedThreads() { return sync.hasQueuedThreads(); }246 * public void lockInterruptibly() throws InterruptedException {247 * sync.acquireInterruptibly(1);248 * }249 * public boolean tryLock(long timeout, TimeUnit unit)250 * throws InterruptedException {251 * return sync.tryAcquireNanos(1, unit.toNanos(timeout));252 * }253 * }254 * /pre255 *256 * pHere is a latch class that is like a {link CountDownLatch}257 * except that it only requires a single ttsignal/tt to258 * fire. Because a latch is non-exclusive, it uses the ttshared/tt259 * acquire and release methods.260 *261 * pre262 * class BooleanLatch {263 *264 * private static class Sync extends AbstractQueuedSynchronizer {265 * boolean isSignalled() { return getState() ! 0; }266 *267 * protected int tryAcquireShared(int ignore) {268 * return isSignalled() ? 1 : -1;269 * }270 *271 * protected boolean tryReleaseShared(int ignore) {272 * setState(1);273 * return true;274 * }275 * }276 *277 * private final Sync sync new Sync();278 * public boolean isSignalled() { return sync.isSignalled(); }279 * public void signal() { sync.releaseShared(1); }280 * public void await() throws InterruptedException {281 * sync.acquireSharedInterruptibly(1);282 * }283 * }284 * /pre285 *286 * since 1.5287 * author Doug Lea288 */289 public abstract class AbstractQueuedSynchronizer290 extends AbstractOwnableSynchronizer291 implements java.io.Serializable {292 293 private static final long serialVersionUID 7373984972572414691L;294 295 /**296 * Creates a new ttAbstractQueuedSynchronizer/tt instance297 * with initial synchronization state of zero.298 */299 protected AbstractQueuedSynchronizer() { }300 301 /**302 * Wait queue node class.303 *304 * pThe wait queue is a variant of a CLH (Craig, Landin, and305 * Hagersten) lock queue. CLH locks are normally used for306 * spinlocks. We instead use them for blocking synchronizers, but307 * use the same basic tactic of holding some of the control308 * information about a thread in the predecessor of its node. A309 * status field in each node keeps track of whether a thread310 * should block. A node is signalled when its predecessor311 * releases. Each node of the queue otherwise serves as a312 * specific-notification-style monitor holding a single waiting313 * thread. The status field does NOT control whether threads are314 * granted locks etc though. A thread may try to acquire if it is315 * first in the queue. But being first does not guarantee success;316 * it only gives the right to contend. So the currently released317 * contender thread may need to rewait.318 *319 * pTo enqueue into a CLH lock, you atomically splice it in as new320 * tail. To dequeue, you just set the head field.321 * pre322 * ------ prev ----- -----323 * head | | ---- | | ---- | | tail324 * ------ ----- -----325 * /pre326 *327 * pInsertion into a CLH queue requires only a single atomic328 * operation on tail, so there is a simple atomic point of329 * demarcation from unqueued to queued. Similarly, dequeing330 * involves only updating the head. However, it takes a bit331 * more work for nodes to determine who their successors are,332 * in part to deal with possible cancellation due to timeouts333 * and interrupts.334 *335 * pThe prev links (not used in original CLH locks), are mainly336 * needed to handle cancellation. If a node is cancelled, its337 * successor is (normally) relinked to a non-cancelled338 * predecessor. For explanation of similar mechanics in the case339 * of spin locks, see the papers by Scott and Scherer at340 * http://www.cs.rochester.edu/u/scott/synchronization/341 *342 * pWe also use next links to implement blocking mechanics.343 * The thread id for each node is kept in its own node, so a344 * predecessor signals the next node to wake up by traversing345 * next link to determine which thread it is. Determination of346 * successor must avoid races with newly queued nodes to set347 * the next fields of their predecessors. This is solved348 * when necessary by checking backwards from the atomically349 * updated tail when a nodes successor appears to be null.350 * (Or, said differently, the next-links are an optimization351 * so that we dont usually need a backward scan.)352 *353 * pCancellation introduces some conservatism to the basic354 * algorithms. Since we must poll for cancellation of other355 * nodes, we can miss noticing whether a cancelled node is356 * ahead or behind us. This is dealt with by always unparking357 * successors upon cancellation, allowing them to stabilize on358 * a new predecessor, unless we can identify an uncancelled359 * predecessor who will carry this responsibility.360 *361 * pCLH queues need a dummy header node to get started. But362 * we dont create them on construction, because it would be wasted363 * effort if there is never contention. Instead, the node364 * is constructed and head and tail pointers are set upon first365 * contention.366 *367 * pThreads waiting on Conditions use the same nodes, but368 * use an additional link. Conditions only need to link nodes369 * in simple (non-concurrent) linked queues because they are370 * only accessed when exclusively held. Upon await, a node is371 * inserted into a condition queue. Upon signal, the node is372 * transferred to the main queue. A special value of status373 * field is used to mark which queue a node is on.374 *375 * pThanks go to Dave Dice, Mark Moir, Victor Luchangco, Bill376 * Scherer and Michael Scott, along with members of JSR-166377 * expert group, for helpful ideas, discussions, and critiques378 * on the design of this class.379 */380 static final class Node {381 /** Marker to indicate a node is waiting in shared mode */382 static final Node SHARED new Node();383 /** Marker to indicate a node is waiting in exclusive mode */384 static final Node EXCLUSIVE null;385 386 /** waitStatus value to indicate thread has cancelled */387 static final int CANCELLED 1;388 /** waitStatus value to indicate successors thread needs unparking */389 static final int SIGNAL -1;390 /** waitStatus value to indicate thread is waiting on condition */391 static final int CONDITION -2;392 /**393 * waitStatus value to indicate the next acquireShared should394 * unconditionally propagate395 */396 static final int PROPAGATE -3;397 398 /**399 * Status field, taking on only the values:400 * SIGNAL: The successor of this node is (or will soon be)401 * blocked (via park), so the current node must402 * unpark its successor when it releases or403 * cancels. To avoid races, acquire methods must404 * first indicate they need a signal,405 * then retry the atomic acquire, and then,406 * on failure, block.407 * CANCELLED: This node is cancelled due to timeout or interrupt.408 * Nodes never leave this state. In particular,409 * a thread with cancelled node never again blocks.410 * CONDITION: This node is currently on a condition queue.411 * It will not be used as a sync queue node412 * until transferred, at which time the status413 * will be set to 0. (Use of this value here has414 * nothing to do with the other uses of the415 * field, but simplifies mechanics.)416 * PROPAGATE: A releaseShared should be propagated to other417 * nodes. This is set (for head node only) in418 * doReleaseShared to ensure propagation419 * continues, even if other operations have420 * since intervened.421 * 0: None of the above422 *423 * The values are arranged numerically to simplify use.424 * Non-negative values mean that a node doesnt need to425 * signal. So, most code doesnt need to check for particular426 * values, just for sign.427 *428 * The field is initialized to 0 for normal sync nodes, and429 * CONDITION for condition nodes. It is modified using CAS430 * (or when possible, unconditional volatile writes).431 */432 volatile int waitStatus;433 434 /**435 * Link to predecessor node that current node/thread relies on436 * for checking waitStatus. Assigned during enqueing, and nulled437 * out (for sake of GC) only upon dequeuing. Also, upon438 * cancellation of a predecessor, we short-circuit while439 * finding a non-cancelled one, which will always exist440 * because the head node is never cancelled: A node becomes441 * head only as a result of successful acquire. A442 * cancelled thread never succeeds in acquiring, and a thread only443 * cancels itself, not any other node.444 */445 volatile Node prev;446 447 /**448 * Link to the successor node that the current node/thread449 * unparks upon release. Assigned during enqueuing, adjusted450 * when bypassing cancelled predecessors, and nulled out (for451 * sake of GC) when dequeued. The enq operation does not452 * assign next field of a predecessor until after attachment,453 * so seeing a null next field does not necessarily mean that454 * node is at end of queue. However, if a next field appears455 * to be null, we can scan prevs from the tail to456 * double-check. The next field of cancelled nodes is set to457 * point to the node itself instead of null, to make life458 * easier for isOnSyncQueue.459 */460 volatile Node next;461 462 /**463 * The thread that enqueued this node. Initialized on464 * construction and nulled out after use.465 */466 volatile Thread thread;467 468 /**469 * Link to next node waiting on condition, or the special470 * value SHARED. Because condition queues are accessed only471 * when holding in exclusive mode, we just need a simple472 * linked queue to hold nodes while they are waiting on473 * conditions. They are then transferred to the queue to474 * re-acquire. And because conditions can only be exclusive,475 * we save a field by using special value to indicate shared476 * mode.477 */478 Node nextWaiter;479 480 /**481 * Returns true if node is waiting in shared mode482 */483 final boolean isShared() {484 return nextWaiter SHARED;485 }486 487 /**488 * Returns previous node, or throws NullPointerException if null.489 * Use when predecessor cannot be null. The null check could490 * be elided, but is present to help the VM.491 *492 * return the predecessor of this node493 */494 final Node predecessor() throws NullPointerException {495 Node p prev;496 if (p null)497 throw new NullPointerException();498 else499 return p;500 }501 502 Node() { // Used to establish initial head or SHARED marker503 }504 505 Node(Thread thread, Node mode) { // Used by addWaiter506 this.nextWaiter mode;507 this.thread thread;508 }509 510 Node(Thread thread, int waitStatus) { // Used by Condition511 this.waitStatus waitStatus;512 this.thread thread;513 }514 }515 516 /**517 * Head of the wait queue, lazily initialized. Except for518 * initialization, it is modified only via method setHead. Note:519 * If head exists, its waitStatus is guaranteed not to be520 * CANCELLED.521 */522 private transient volatile Node head;523 524 /**525 * Tail of the wait queue, lazily initialized. Modified only via526 * method enq to add new wait node.527 */528 private transient volatile Node tail;529 530 /**531 * The synchronization state.532 */533 private volatile int state;534 535 /**536 * Returns the current value of synchronization state.537 * This operation has memory semantics of a ttvolatile/tt read.538 * return current state value539 */540 protected final int getState() {541 return state;542 }543 544 /**545 * Sets the value of synchronization state.546 * This operation has memory semantics of a ttvolatile/tt write.547 * param newState the new state value548 */549 protected final void setState(int newState) {550 state newState;551 }552 553 /**554 * Atomically sets synchronization state to the given updated555 * value if the current state value equals the expected value.556 * This operation has memory semantics of a ttvolatile/tt read557 * and write.558 *559 * param expect the expected value560 * param update the new value561 * return true if successful. False return indicates that the actual562 * value was not equal to the expected value.563 */564 protected final boolean compareAndSetState(int expect, int update) {565 // See below for intrinsics setup to support this566 return unsafe.compareAndSwapInt(this, stateOffset, expect, update);567 }568 569 // Queuing utilities570 571 /**572 * The number of nanoseconds for which it is faster to spin573 * rather than to use timed park. A rough estimate suffices574 * to improve responsiveness with very short timeouts.575 */576 static final long spinForTimeoutThreshold 1000L;577 578 /**579 * Inserts node into queue, initializing if necessary. See picture above.580 * param node the node to insert581 * return nodes predecessor582 */583 private Node enq(final Node node) {584 for (;;) {585 Node t tail;586 if (t null) { // Must initialize587 if (compareAndSetHead(new Node()))588 tail head;589 } else {590 node.prev t;591 if (compareAndSetTail(t, node)) {592 t.next node;593 return t;594 }595 }596 }597 }598 599 /**600 * Creates and enqueues node for current thread and given mode.601 *602 * param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared603 * return the new node604 */605 private Node addWaiter(Node mode) {606 Node node new Node(Thread.currentThread(), mode);607 // Try the fast path of enq; backup to full enq on failure608 Node pred tail;609 if (pred ! null) {610 node.prev pred;611 if (compareAndSetTail(pred, node)) {612 pred.next node;613 return node;614 }615 }616 enq(node);617 return node;618 }619 620 /**621 * Sets head of queue to be node, thus dequeuing. Called only by622 * acquire methods. Also nulls out unused fields for sake of GC623 * and to suppress unnecessary signals and traversals.624 *625 * param node the node626 */627 private void setHead(Node node) {628 head node;629 node.thread null;630 node.prev null;631 }632 633 /**634 * Wakes up nodes successor, if one exists.635 *636 * param node the node637 */638 private void unparkSuccessor(Node node) {639 /*640 * If status is negative (i.e., possibly needing signal) try641 * to clear in anticipation of signalling. It is OK if this642 * fails or if status is changed by waiting thread.643 */644 int ws node.waitStatus;645 if (ws 0)646 compareAndSetWaitStatus(node, ws, 0);647 648 /*649 * Thread to unpark is held in successor, which is normally650 * just the next node. But if cancelled or apparently null,651 * traverse backwards from tail to find the actual652 * non-cancelled successor.653 */654 Node s node.next;655 if (s null || s.waitStatus 0) {656 s null;657 for (Node t tail; t ! null t ! node; t t.prev)658 if (t.waitStatus 0)659 s t;660 }661 if (s ! null)662 LockSupport.unpark(s.thread);663 }664 665 /**666 * Release action for shared mode -- signal successor and ensure667 * propagation. (Note: For exclusive mode, release just amounts668 * to calling unparkSuccessor of head if it needs signal.)669 */670 private void doReleaseShared() {671 /*672 * Ensure that a release propagates, even if there are other673 * in-progress acquires/releases. This proceeds in the usual674 * way of trying to unparkSuccessor of head if it needs675 * signal. But if it does not, status is set to PROPAGATE to676 * ensure that upon release, propagation continues.677 * Additionally, we must loop in case a new node is added678 * while we are doing this. Also, unlike other uses of679 * unparkSuccessor, we need to know if CAS to reset status680 * fails, if so rechecking.681 */682 for (;;) {683 Node h head;684 if (h ! null h ! tail) {685 int ws h.waitStatus;686 if (ws Node.SIGNAL) {687 if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))688 continue; // loop to recheck cases689 unparkSuccessor(h);690 }691 else if (ws 0 692 !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))693 continue; // loop on failed CAS694 }695 if (h head) // loop if head changed696 break;697 }698 }699 700 /**701 * Sets head of queue, and checks if successor may be waiting702 * in shared mode, if so propagating if either propagate 0 or703 * PROPAGATE status was set.704 *705 * param node the node706 * param propagate the return value from a tryAcquireShared707 */708 private void setHeadAndPropagate(Node node, int propagate) {709 Node h head; // Record old head for check below710 setHead(node);711 /*712 * Try to signal next queued node if:713 * Propagation was indicated by caller,714 * or was recorded (as h.waitStatus) by a previous operation715 * (note: this uses sign-check of waitStatus because716 * PROPAGATE status may transition to SIGNAL.)717 * and718 * The next node is waiting in shared mode,719 * or we dont know, because it appears null720 *721 * The conservatism in both of these checks may cause722 * unnecessary wake-ups, but only when there are multiple723 * racing acquires/releases, so most need signals now or soon724 * anyway.725 */726 if (propagate 0 || h null || h.waitStatus 0) {727 Node s node.next;728 if (s null || s.isShared())729 doReleaseShared();730 }731 }732 733 // Utilities for various versions of acquire734 735 /**736 * Cancels an ongoing attempt to acquire.737 *738 * param node the node739 */740 private void cancelAcquire(Node node) {741 // Ignore if node doesnt exist742 if (node null)743 return;744 745 node.thread null;746 747 // Skip cancelled predecessors748 Node pred node.prev;749 while (pred.waitStatus 0)750 node.prev pred pred.prev;751 752 // predNext is the apparent node to unsplice. CASes below will753 // fail if not, in which case, we lost race vs another cancel754 // or signal, so no further action is necessary.755 Node predNext pred.next;756 757 // Can use unconditional write instead of CAS here.758 // After this atomic step, other Nodes can skip past us.759 // Before, we are free of interference from other threads.760 node.waitStatus Node.CANCELLED;761 762 // If we are the tail, remove ourselves.763 if (node tail compareAndSetTail(node, pred)) {764 compareAndSetNext(pred, predNext, null);765 } else {766 // If successor needs signal, try to set preds next-link767 // so it will get one. Otherwise wake it up to propagate.768 int ws;769 if (pred ! head 770 ((ws pred.waitStatus) Node.SIGNAL ||771 (ws 0 compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) 772 pred.thread ! null) {773 Node next node.next;774 if (next ! null next.waitStatus 0)775 compareAndSetNext(pred, predNext, next);776 } else {777 unparkSuccessor(node);778 }779 780 node.next node; // help GC781 }782 }783 784 /**785 * Checks and updates status for a node that failed to acquire.786 * Returns true if thread should block. This is the main signal787 * control in all acquire loops. Requires that pred node.prev788 *789 * param pred nodes predecessor holding status790 * param node the node791 * return {code true} if thread should block792 */793 private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {794 int ws pred.waitStatus;795 if (ws Node.SIGNAL)796 /*797 * This node has already set status asking a release798 * to signal it, so it can safely park.799 */800 return true;801 if (ws 0) {802 /*803 * Predecessor was cancelled. Skip over predecessors and804 * indicate retry.805 */806 do {807 node.prev pred pred.prev;808 } while (pred.waitStatus 0);809 pred.next node;810 } else {811 /*812 * waitStatus must be 0 or PROPAGATE. Indicate that we813 * need a signal, but dont park yet. Caller will need to814 * retry to make sure it cannot acquire before parking.815 */816 compareAndSetWaitStatus(pred, ws, Node.SIGNAL);817 }818 return false;819 }820 821 /**822 * Convenience method to interrupt current thread.823 */824 private static void selfInterrupt() {825 Thread.currentThread().interrupt();826 }827 828 /**829 * Convenience method to park and then check if interrupted830 *831 * return {code true} if interrupted832 */833 private final boolean parkAndCheckInterrupt() {834 LockSupport.park(this);835 return Thread.interrupted();836 }837 838 /*839 * Various flavors of acquire, varying in exclusive/shared and840 * control modes. Each is mostly the same, but annoyingly841 * different. Only a little bit of factoring is possible due to842 * interactions of exception mechanics (including ensuring that we843 * cancel if tryAcquire throws exception) and other control, at844 * least not without hurting performance too much.845 */846 847 /**848 * Acquires in exclusive uninterruptible mode for thread already in849 * queue. Used by condition wait methods as well as acquire.850 *851 * param node the node852 * param arg the acquire argument853 * return {code true} if interrupted while waiting854 */855 final boolean acquireQueued(final Node node, int arg) {856 boolean failed true;857 try {858 boolean interrupted false;859 for (;;) {860 final Node p node.predecessor();861 if (p head tryAcquire(arg)) {862 setHead(node);863 p.next null; // help GC864 failed false;865 return interrupted;866 }867 if (shouldParkAfterFailedAcquire(p, node) 868 parkAndCheckInterrupt())869 interrupted true;870 }871 } finally {872 if (failed)873 cancelAcquire(node);874 }875 }876 877 /**878 * Acquires in exclusive interruptible mode.879 * param arg the acquire argument880 */881 private void doAcquireInterruptibly(int arg)882 throws InterruptedException {883 final Node node addWaiter(Node.EXCLUSIVE);884 boolean failed true;885 try {886 for (;;) {887 final Node p node.predecessor();888 if (p head tryAcquire(arg)) {889 setHead(node);890 p.next null; // help GC891 failed false;892 return;893 }894 if (shouldParkAfterFailedAcquire(p, node) 895 parkAndCheckInterrupt())896 throw new InterruptedException();897 }898 } finally {899 if (failed)900 cancelAcquire(node);901 }902 }903 904 /**905 * Acquires in exclusive timed mode.906 *907 * param arg the acquire argument908 * param nanosTimeout max wait time909 * return {code true} if acquired910 */911 private boolean doAcquireNanos(int arg, long nanosTimeout)912 throws InterruptedException {913 long lastTime System.nanoTime();914 final Node node addWaiter(Node.EXCLUSIVE);915 boolean failed true;916 try {917 for (;;) {918 final Node p node.predecessor();919 if (p head tryAcquire(arg)) {920 setHead(node);921 p.next null; // help GC922 failed false;923 return true;924 }925 if (nanosTimeout 0)926 return false;927 if (shouldParkAfterFailedAcquire(p, node) 928 nanosTimeout spinForTimeoutThreshold)929 LockSupport.parkNanos(this, nanosTimeout);930 long now System.nanoTime();931 nanosTimeout - now - lastTime;932 lastTime now;933 if (Thread.interrupted())934 throw new InterruptedException();935 }936 } finally {937 if (failed)938 cancelAcquire(node);939 }940 }941 942 /**943 * Acquires in shared uninterruptible mode.944 * param arg the acquire argument945 */946 private void doAcquireShared(int arg) {947 final Node node addWaiter(Node.SHARED);948 boolean failed true;949 try {950 boolean interrupted false;951 for (;;) {952 final Node p node.predecessor();953 if (p head) {954 int r tryAcquireShared(arg);955 if (r 0) {956 setHeadAndPropagate(node, r);957 p.next null; // help GC958 if (interrupted)959 selfInterrupt();960 failed false;961 return;962 }963 }964 if (shouldParkAfterFailedAcquire(p, node) 965 parkAndCheckInterrupt())966 interrupted true;967 }968 } finally {969 if (failed)970 cancelAcquire(node);971 }972 }973 974 /**975 * Acquires in shared interruptible mode.976 * param arg the acquire argument977 */978 private void doAcquireSharedInterruptibly(int arg)979 throws InterruptedException {980 final Node node addWaiter(Node.SHARED);981 boolean failed true;982 try {983 for (;;) {984 final Node p node.predecessor();985 if (p head) {986 int r tryAcquireShared(arg);987 if (r 0) {988 setHeadAndPropagate(node, r);989 p.next null; // help GC990 failed false;991 return;992 }993 }994 if (shouldParkAfterFailedAcquire(p, node) 995 parkAndCheckInterrupt())996 throw new InterruptedException();997 }998 } finally {999 if (failed) 1000 cancelAcquire(node); 1001 } 1002 } 1003 1004 /** 1005 * Acquires in shared timed mode. 1006 * 1007 * param arg the acquire argument 1008 * param nanosTimeout max wait time 1009 * return {code true} if acquired 1010 */ 1011 private boolean doAcquireSharedNanos(int arg, long nanosTimeout) 1012 throws InterruptedException { 1013 1014 long lastTime System.nanoTime(); 1015 final Node node addWaiter(Node.SHARED); 1016 boolean failed true; 1017 try { 1018 for (;;) { 1019 final Node p node.predecessor(); 1020 if (p head) { 1021 int r tryAcquireShared(arg); 1022 if (r 0) { 1023 setHeadAndPropagate(node, r); 1024 p.next null; // help GC 1025 failed false; 1026 return true; 1027 } 1028 } 1029 if (nanosTimeout 0) 1030 return false; 1031 if (shouldParkAfterFailedAcquire(p, node) 1032 nanosTimeout spinForTimeoutThreshold) 1033 LockSupport.parkNanos(this, nanosTimeout); 1034 long now System.nanoTime(); 1035 nanosTimeout - now - lastTime; 1036 lastTime now; 1037 if (Thread.interrupted()) 1038 throw new InterruptedException(); 1039 } 1040 } finally { 1041 if (failed) 1042 cancelAcquire(node); 1043 } 1044 } 1045 1046 // Main exported methods 1047 1048 /** 1049 * Attempts to acquire in exclusive mode. This method should query 1050 * if the state of the object permits it to be acquired in the 1051 * exclusive mode, and if so to acquire it. 1052 * 1053 * pThis method is always invoked by the thread performing 1054 * acquire. If this method reports failure, the acquire method 1055 * may queue the thread, if it is not already queued, until it is 1056 * signalled by a release from some other thread. This can be used 1057 * to implement method {link Lock#tryLock()}. 1058 * 1059 * pThe default 1060 * implementation throws {link UnsupportedOperationException}. 1061 * 1062 * param arg the acquire argument. This value is always the one 1063 * passed to an acquire method, or is the value saved on entry 1064 * to a condition wait. The value is otherwise uninterpreted 1065 * and can represent anything you like. 1066 * return {code true} if successful. Upon success, this object has 1067 * been acquired. 1068 * throws IllegalMonitorStateException if acquiring would place this 1069 * synchronizer in an illegal state. This exception must be 1070 * thrown in a consistent fashion for synchronization to work 1071 * correctly. 1072 * throws UnsupportedOperationException if exclusive mode is not supported 1073 */ 1074 protected boolean tryAcquire(int arg) { 1075 throw new UnsupportedOperationException(); 1076 } 1077 1078 /** 1079 * Attempts to set the state to reflect a release in exclusive 1080 * mode. 1081 * 1082 * pThis method is always invoked by the thread performing release. 1083 * 1084 * pThe default implementation throws 1085 * {link UnsupportedOperationException}. 1086 * 1087 * param arg the release argument. This value is always the one 1088 * passed to a release method, or the current state value upon 1089 * entry to a condition wait. The value is otherwise 1090 * uninterpreted and can represent anything you like. 1091 * return {code true} if this object is now in a fully released 1092 * state, so that any waiting threads may attempt to acquire; 1093 * and {code false} otherwise. 1094 * throws IllegalMonitorStateException if releasing would place this 1095 * synchronizer in an illegal state. This exception must be 1096 * thrown in a consistent fashion for synchronization to work 1097 * correctly. 1098 * throws UnsupportedOperationException if exclusive mode is not supported 1099 */ 1100 protected boolean tryRelease(int arg) { 1101 throw new UnsupportedOperationException(); 1102 } 1103 1104 /** 1105 * Attempts to acquire in shared mode. This method should query if 1106 * the state of the object permits it to be acquired in the shared 1107 * mode, and if so to acquire it. 1108 * 1109 * pThis method is always invoked by the thread performing 1110 * acquire. If this method reports failure, the acquire method 1111 * may queue the thread, if it is not already queued, until it is 1112 * signalled by a release from some other thread. 1113 * 1114 * pThe default implementation throws {link 1115 * UnsupportedOperationException}. 1116 * 1117 * param arg the acquire argument. This value is always the one 1118 * passed to an acquire method, or is the value saved on entry 1119 * to a condition wait. The value is otherwise uninterpreted 1120 * and can represent anything you like. 1121 * return a negative value on failure; zero if acquisition in shared 1122 * mode succeeded but no subsequent shared-mode acquire can 1123 * succeed; and a positive value if acquisition in shared 1124 * mode succeeded and subsequent shared-mode acquires might 1125 * also succeed, in which case a subsequent waiting thread 1126 * must check availability. (Support for three different 1127 * return values enables this method to be used in contexts 1128 * where acquires only sometimes act exclusively.) Upon 1129 * success, this object has been acquired. 1130 * throws IllegalMonitorStateException if acquiring would place this 1131 * synchronizer in an illegal state. This exception must be 1132 * thrown in a consistent fashion for synchronization to work 1133 * correctly. 1134 * throws UnsupportedOperationException if shared mode is not supported 1135 */ 1136 protected int tryAcquireShared(int arg) { 1137 throw new UnsupportedOperationException(); 1138 } 1139 1140 /** 1141 * Attempts to set the state to reflect a release in shared mode. 1142 * 1143 * pThis method is always invoked by the thread performing release. 1144 * 1145 * pThe default implementation throws 1146 * {link UnsupportedOperationException}. 1147 * 1148 * param arg the release argument. This value is always the one 1149 * passed to a release method, or the current state value upon 1150 * entry to a condition wait. The value is otherwise 1151 * uninterpreted and can represent anything you like. 1152 * return {code true} if this release of shared mode may permit a 1153 * waiting acquire (shared or exclusive) to succeed; and 1154 * {code false} otherwise 1155 * throws IllegalMonitorStateException if releasing would place this 1156 * synchronizer in an illegal state. This exception must be 1157 * thrown in a consistent fashion for synchronization to work 1158 * correctly. 1159 * throws UnsupportedOperationException if shared mode is not supported 1160 */ 1161 protected boolean tryReleaseShared(int arg) { 1162 throw new UnsupportedOperationException(); 1163 } 1164 1165 /** 1166 * Returns {code true} if synchronization is held exclusively with 1167 * respect to the current (calling) thread. This method is invoked 1168 * upon each call to a non-waiting {link ConditionObject} method. 1169 * (Waiting methods instead invoke {link #release}.) 1170 * 1171 * pThe default implementation throws {link 1172 * UnsupportedOperationException}. This method is invoked 1173 * internally only within {link ConditionObject} methods, so need 1174 * not be defined if conditions are not used. 1175 * 1176 * return {code true} if synchronization is held exclusively; 1177 * {code false} otherwise 1178 * throws UnsupportedOperationException if conditions are not supported 1179 */ 1180 protected boolean isHeldExclusively() { 1181 throw new UnsupportedOperationException(); 1182 } 1183 1184 /** 1185 * Acquires in exclusive mode, ignoring interrupts. Implemented 1186 * by invoking at least once {link #tryAcquire}, 1187 * returning on success. Otherwise the thread is queued, possibly 1188 * repeatedly blocking and unblocking, invoking {link 1189 * #tryAcquire} until success. This method can be used 1190 * to implement method {link Lock#lock}. 1191 * 1192 * param arg the acquire argument. This value is conveyed to 1193 * {link #tryAcquire} but is otherwise uninterpreted and 1194 * can represent anything you like. 1195 */ 1196 public final void acquire(int arg) { 1197 if (!tryAcquire(arg) 1198 acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) 1199 selfInterrupt(); 1200 } 1201 1202 /** 1203 * Acquires in exclusive mode, aborting if interrupted. 1204 * Implemented by first checking interrupt status, then invoking 1205 * at least once {link #tryAcquire}, returning on 1206 * success. Otherwise the thread is queued, possibly repeatedly 1207 * blocking and unblocking, invoking {link #tryAcquire} 1208 * until success or the thread is interrupted. This method can be 1209 * used to implement method {link Lock#lockInterruptibly}. 1210 * 1211 * param arg the acquire argument. This value is conveyed to 1212 * {link #tryAcquire} but is otherwise uninterpreted and 1213 * can represent anything you like. 1214 * throws InterruptedException if the current thread is interrupted 1215 */ 1216 public final void acquireInterruptibly(int arg) 1217 throws InterruptedException { 1218 if (Thread.interrupted()) 1219 throw new InterruptedException(); 1220 if (!tryAcquire(arg)) 1221 doAcquireInterruptibly(arg); 1222 } 1223 1224 /** 1225 * Attempts to acquire in exclusive mode, aborting if interrupted, 1226 * and failing if the given timeout elapses. Implemented by first 1227 * checking interrupt status, then invoking at least once {link 1228 * #tryAcquire}, returning on success. Otherwise, the thread is 1229 * queued, possibly repeatedly blocking and unblocking, invoking 1230 * {link #tryAcquire} until success or the thread is interrupted 1231 * or the timeout elapses. This method can be used to implement 1232 * method {link Lock#tryLock(long, TimeUnit)}. 1233 * 1234 * param arg the acquire argument. This value is conveyed to 1235 * {link #tryAcquire} but is otherwise uninterpreted and 1236 * can represent anything you like. 1237 * param nanosTimeout the maximum number of nanoseconds to wait 1238 * return {code true} if acquired; {code false} if timed out 1239 * throws InterruptedException if the current thread is interrupted 1240 */ 1241 public final boolean tryAcquireNanos(int arg, long nanosTimeout) 1242 throws InterruptedException { 1243 if (Thread.interrupted()) 1244 throw new InterruptedException(); 1245 return tryAcquire(arg) || 1246 doAcquireNanos(arg, nanosTimeout); 1247 } 1248 1249 /** 1250 * Releases in exclusive mode. Implemented by unblocking one or 1251 * more threads if {link #tryRelease} returns true. 1252 * This method can be used to implement method {link Lock#unlock}. 1253 * 1254 * param arg the release argument. This value is conveyed to 1255 * {link #tryRelease} but is otherwise uninterpreted and 1256 * can represent anything you like. 1257 * return the value returned from {link #tryRelease} 1258 */ 1259 public final boolean release(int arg) { 1260 if (tryRelease(arg)) { 1261 Node h head; 1262 if (h ! null h.waitStatus ! 0) 1263 unparkSuccessor(h); 1264 return true; 1265 } 1266 return false; 1267 } 1268 1269 /** 1270 * Acquires in shared mode, ignoring interrupts. Implemented by 1271 * first invoking at least once {link #tryAcquireShared}, 1272 * returning on success. Otherwise the thread is queued, possibly 1273 * repeatedly blocking and unblocking, invoking {link 1274 * #tryAcquireShared} until success. 1275 * 1276 * param arg the acquire argument. This value is conveyed to 1277 * {link #tryAcquireShared} but is otherwise uninterpreted 1278 * and can represent anything you like. 1279 */ 1280 public final void acquireShared(int arg) { 1281 if (tryAcquireShared(arg) 0) 1282 doAcquireShared(arg); 1283 } 1284 1285 /** 1286 * Acquires in shared mode, aborting if interrupted. Implemented 1287 * by first checking interrupt status, then invoking at least once 1288 * {link #tryAcquireShared}, returning on success. Otherwise the 1289 * thread is queued, possibly repeatedly blocking and unblocking, 1290 * invoking {link #tryAcquireShared} until success or the thread 1291 * is interrupted. 1292 * param arg the acquire argument 1293 * This value is conveyed to {link #tryAcquireShared} but is 1294 * otherwise uninterpreted and can represent anything 1295 * you like. 1296 * throws InterruptedException if the current thread is interrupted 1297 */ 1298 public final void acquireSharedInterruptibly(int arg) 1299 throws InterruptedException { 1300 if (Thread.interrupted()) 1301 throw new InterruptedException(); 1302 if (tryAcquireShared(arg) 0) 1303 doAcquireSharedInterruptibly(arg); 1304 } 1305 1306 /** 1307 * Attempts to acquire in shared mode, aborting if interrupted, and 1308 * failing if the given timeout elapses. Implemented by first 1309 * checking interrupt status, then invoking at least once {link 1310 * #tryAcquireShared}, returning on success. Otherwise, the 1311 * thread is queued, possibly repeatedly blocking and unblocking, 1312 * invoking {link #tryAcquireShared} until success or the thread 1313 * is interrupted or the timeout elapses. 1314 * 1315 * param arg the acquire argument. This value is conveyed to 1316 * {link #tryAcquireShared} but is otherwise uninterpreted 1317 * and can represent anything you like. 1318 * param nanosTimeout the maximum number of nanoseconds to wait 1319 * return {code true} if acquired; {code false} if timed out 1320 * throws InterruptedException if the current thread is interrupted 1321 */ 1322 public final boolean tryAcquireSharedNanos(int arg, long nanosTimeout) 1323 throws InterruptedException { 1324 if (Thread.interrupted()) 1325 throw new InterruptedException(); 1326 return tryAcquireShared(arg) 0 || 1327 doAcquireSharedNanos(arg, nanosTimeout); 1328 } 1329 1330 /** 1331 * Releases in shared mode. Implemented by unblocking one or more 1332 * threads if {link #tryReleaseShared} returns true. 1333 * 1334 * param arg the release argument. This value is conveyed to 1335 * {link #tryReleaseShared} but is otherwise uninterpreted 1336 * and can represent anything you like. 1337 * return the value returned from {link #tryReleaseShared} 1338 */ 1339 public final boolean releaseShared(int arg) { 1340 if (tryReleaseShared(arg)) { 1341 doReleaseShared(); 1342 return true; 1343 } 1344 return false; 1345 } 1346 1347 // Queue inspection methods 1348 1349 /** 1350 * Queries whether any threads are waiting to acquire. Note that 1351 * because cancellations due to interrupts and timeouts may occur 1352 * at any time, a {code true} return does not guarantee that any 1353 * other thread will ever acquire. 1354 * 1355 * pIn this implementation, this operation returns in 1356 * constant time. 1357 * 1358 * return {code true} if there may be other threads waiting to acquire 1359 */ 1360 public final boolean hasQueuedThreads() { 1361 return head ! tail; 1362 } 1363 1364 /** 1365 * Queries whether any threads have ever contended to acquire this 1366 * synchronizer; that is if an acquire method has ever blocked. 1367 * 1368 * pIn this implementation, this operation returns in 1369 * constant time. 1370 * 1371 * return {code true} if there has ever been contention 1372 */ 1373 public final boolean hasContended() { 1374 return head ! null; 1375 } 1376 1377 /** 1378 * Returns the first (longest-waiting) thread in the queue, or 1379 * {code null} if no threads are currently queued. 1380 * 1381 * pIn this implementation, this operation normally returns in 1382 * constant time, but may iterate upon contention if other threads are 1383 * concurrently modifying the queue. 1384 * 1385 * return the first (longest-waiting) thread in the queue, or 1386 * {code null} if no threads are currently queued 1387 */ 1388 public final Thread getFirstQueuedThread() { 1389 // handle only fast path, else relay 1390 return (head tail) ? null : fullGetFirstQueuedThread(); 1391 } 1392 1393 /** 1394 * Version of getFirstQueuedThread called when fastpath fails 1395 */ 1396 private Thread fullGetFirstQueuedThread() { 1397 /* 1398 * The first node is normally head.next. Try to get its 1399 * thread field, ensuring consistent reads: If thread 1400 * field is nulled out or s.prev is no longer head, then 1401 * some other thread(s) concurrently performed setHead in 1402 * between some of our reads. We try this twice before 1403 * resorting to traversal. 1404 */ 1405 Node h, s; 1406 Thread st; 1407 if (((h head) ! null (s h.next) ! null 1408 s.prev head (st s.thread) ! null) || 1409 ((h head) ! null (s h.next) ! null 1410 s.prev head (st s.thread) ! null)) 1411 return st; 1412 1413 /* 1414 * Heads next field might not have been set yet, or may have 1415 * been unset after setHead. So we must check to see if tail 1416 * is actually first node. If not, we continue on, safely 1417 * traversing from tail back to head to find first, 1418 * guaranteeing termination. 1419 */ 1420 1421 Node t tail; 1422 Thread firstThread null; 1423 while (t ! null t ! head) { 1424 Thread tt t.thread; 1425 if (tt ! null) 1426 firstThread tt; 1427 t t.prev; 1428 } 1429 return firstThread; 1430 } 1431 1432 /** 1433 * Returns true if the given thread is currently queued. 1434 * 1435 * pThis implementation traverses the queue to determine 1436 * presence of the given thread. 1437 * 1438 * param thread the thread 1439 * return {code true} if the given thread is on the queue 1440 * throws NullPointerException if the thread is null 1441 */ 1442 public final boolean isQueued(Thread thread) { 1443 if (thread null) 1444 throw new NullPointerException(); 1445 for (Node p tail; p ! null; p p.prev) 1446 if (p.thread thread) 1447 return true; 1448 return false; 1449 } 1450 1451 /** 1452 * Returns {code true} if the apparent first queued thread, if one 1453 * exists, is waiting in exclusive mode. If this method returns 1454 * {code true}, and the current thread is attempting to acquire in 1455 * shared mode (that is, this method is invoked from {link 1456 * #tryAcquireShared}) then it is guaranteed that the current thread 1457 * is not the first queued thread. Used only as a heuristic in 1458 * ReentrantReadWriteLock. 1459 */ 1460 final boolean apparentlyFirstQueuedIsExclusive() { 1461 Node h, s; 1462 return (h head) ! null 1463 (s h.next) ! null 1464 !s.isShared() 1465 s.thread ! null; 1466 } 1467 1468 /** 1469 * Queries whether any threads have been waiting to acquire longer 1470 * than the current thread. 1471 * 1472 * pAn invocation of this method is equivalent to (but may be 1473 * more efficient than): 1474 * pre {code 1475 * getFirstQueuedThread() ! Thread.currentThread() 1476 * hasQueuedThreads()}/pre 1477 * 1478 * pNote that because cancellations due to interrupts and 1479 * timeouts may occur at any time, a {code true} return does not 1480 * guarantee that some other thread will acquire before the current 1481 * thread. Likewise, it is possible for another thread to win a 1482 * race to enqueue after this method has returned {code false}, 1483 * due to the queue being empty. 1484 * 1485 * pThis method is designed to be used by a fair synchronizer to 1486 * avoid a hrefAbstractQueuedSynchronizer#bargingbarging/a. 1487 * Such a synchronizers {link #tryAcquire} method should return 1488 * {code false}, and its {link #tryAcquireShared} method should 1489 * return a negative value, if this method returns {code true} 1490 * (unless this is a reentrant acquire). For example, the {code 1491 * tryAcquire} method for a fair, reentrant, exclusive mode 1492 * synchronizer might look like this: 1493 * 1494 * pre {code 1495 * protected boolean tryAcquire(int arg) { 1496 * if (isHeldExclusively()) { 1497 * // A reentrant acquire; increment hold count 1498 * return true; 1499 * } else if (hasQueuedPredecessors()) { 1500 * return false; 1501 * } else { 1502 * // try to acquire normally 1503 * } 1504 * }}/pre 1505 * 1506 * return {code true} if there is a queued thread preceding the 1507 * current thread, and {code false} if the current thread 1508 * is at the head of the queue or the queue is empty 1509 * since 1.7 1510 */ 1511 public final boolean hasQueuedPredecessors() { 1512 // The correctness of this depends on head being initialized 1513 // before tail and on head.next being accurate if the current 1514 // thread is first in queue. 1515 Node t tail; // Read fields in reverse initialization order 1516 Node h head; 1517 Node s; 1518 return h ! t 1519 ((s h.next) null || s.thread ! Thread.currentThread()); 1520 } 1521 1522 1523 // Instrumentation and monitoring methods 1524 1525 /** 1526 * Returns an estimate of the number of threads waiting to 1527 * acquire. The value is only an estimate because the number of 1528 * threads may change dynamically while this method traverses 1529 * internal data structures. This method is designed for use in 1530 * monitoring system state, not for synchronization 1531 * control. 1532 * 1533 * return the estimated number of threads waiting to acquire 1534 */ 1535 public final int getQueueLength() { 1536 int n 0; 1537 for (Node p tail; p ! null; p p.prev) { 1538 if (p.thread ! null) 1539 n; 1540 } 1541 return n; 1542 } 1543 1544 /** 1545 * Returns a collection containing threads that may be waiting to 1546 * acquire. Because the actual set of threads may change 1547 * dynamically while constructing this result, the returned 1548 * collection is only a best-effort estimate. The elements of the 1549 * returned collection are in no particular order. This method is 1550 * designed to facilitate construction of subclasses that provide 1551 * more extensive monitoring facilities. 1552 * 1553 * return the collection of threads 1554 */ 1555 public final CollectionThread getQueuedThreads() { 1556 ArrayListThread list new ArrayListThread(); 1557 for (Node p tail; p ! null; p p.prev) { 1558 Thread t p.thread; 1559 if (t ! null) 1560 list.add(t); 1561 } 1562 return list; 1563 } 1564 1565 /** 1566 * Returns a collection containing threads that may be waiting to 1567 * acquire in exclusive mode. This has the same properties 1568 * as {link #getQueuedThreads} except that it only returns 1569 * those threads waiting due to an exclusive acquire. 1570 * 1571 * return the collection of threads 1572 */ 1573 public final CollectionThread getExclusiveQueuedThreads() { 1574 ArrayListThread list new ArrayListThread(); 1575 for (Node p tail; p ! null; p p.prev) { 1576 if (!p.isShared()) { 1577 Thread t p.thread; 1578 if (t ! null) 1579 list.add(t); 1580 } 1581 } 1582 return list; 1583 } 1584 1585 /** 1586 * Returns a collection containing threads that may be waiting to 1587 * acquire in shared mode. This has the same properties 1588 * as {link #getQueuedThreads} except that it only returns 1589 * those threads waiting due to a shared acquire. 1590 * 1591 * return the collection of threads 1592 */ 1593 public final CollectionThread getSharedQueuedThreads() { 1594 ArrayListThread list new ArrayListThread(); 1595 for (Node p tail; p ! null; p p.prev) { 1596 if (p.isShared()) { 1597 Thread t p.thread; 1598 if (t ! null) 1599 list.add(t); 1600 } 1601 } 1602 return list; 1603 } 1604 1605 /** 1606 * Returns a string identifying this synchronizer, as well as its state. 1607 * The state, in brackets, includes the String {code State } 1608 * followed by the current value of {link #getState}, and either 1609 * {code nonempty} or {code empty} depending on whether the 1610 * queue is empty. 1611 * 1612 * return a string identifying this synchronizer, as well as its state 1613 */ 1614 public String toString() { 1615 int s getState(); 1616 String q hasQueuedThreads() ? non : ; 1617 return super.toString() 1618 [State s , q empty queue]; 1619 } 1620 1621 1622 // Internal support methods for Conditions 1623 1624 /** 1625 * Returns true if a node, always one that was initially placed on 1626 * a condition queue, is now waiting to reacquire on sync queue. 1627 * param node the node 1628 * return true if is reacquiring 1629 */ 1630 final boolean isOnSyncQueue(Node node) { 1631 if (node.waitStatus Node.CONDITION || node.prev null) 1632 return false; 1633 if (node.next ! null) // If has successor, it must be on queue 1634 return true; 1635 /* 1636 * node.prev can be non-null, but not yet on queue because 1637 * the CAS to place it on queue can fail. So we have to 1638 * traverse from tail to make sure it actually made it. It 1639 * will always be near the tail in calls to this method, and 1640 * unless the CAS failed (which is unlikely), it will be 1641 * there, so we hardly ever traverse much. 1642 */ 1643 return findNodeFromTail(node); 1644 } 1645 1646 /** 1647 * Returns true if node is on sync queue by searching backwards from tail. 1648 * Called only when needed by isOnSyncQueue. 1649 * return true if present 1650 */ 1651 private boolean findNodeFromTail(Node node) { 1652 Node t tail; 1653 for (;;) { 1654 if (t node) 1655 return true; 1656 if (t null) 1657 return false; 1658 t t.prev; 1659 } 1660 } 1661 1662 /** 1663 * Transfers a node from a condition queue onto sync queue. 1664 * Returns true if successful. 1665 * param node the node 1666 * return true if successfully transferred (else the node was 1667 * cancelled before signal). 1668 */ 1669 final boolean transferForSignal(Node node) { 1670 /* 1671 * If cannot change waitStatus, the node has been cancelled. 1672 */ 1673 if (!compareAndSetWaitStatus(node, Node.CONDITION, 0)) 1674 return false; 1675 1676 /* 1677 * Splice onto queue and try to set waitStatus of predecessor to 1678 * indicate that thread is (probably) waiting. If cancelled or 1679 * attempt to set waitStatus fails, wake up to resync (in which 1680 * case the waitStatus can be transiently and harmlessly wrong). 1681 */ 1682 Node p enq(node); 1683 int ws p.waitStatus; 1684 if (ws 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL)) 1685 LockSupport.unpark(node.thread); 1686 return true; 1687 } 1688 1689 /** 1690 * Transfers node, if necessary, to sync queue after a cancelled 1691 * wait. Returns true if thread was cancelled before being 1692 * signalled. 1693 * param current the waiting thread 1694 * param node its node 1695 * return true if cancelled before the node was signalled 1696 */ 1697 final boolean transferAfterCancelledWait(Node node) { 1698 if (compareAndSetWaitStatus(node, Node.CONDITION, 0)) { 1699 enq(node); 1700 return true; 1701 } 1702 /* 1703 * If we lost out to a signal(), then we cant proceed 1704 * until it finishes its enq(). Cancelling during an 1705 * incomplete transfer is both rare and transient, so just 1706 * spin. 1707 */ 1708 while (!isOnSyncQueue(node)) 1709 Thread.yield(); 1710 return false; 1711 } 1712 1713 /** 1714 * Invokes release with current state value; returns saved state. 1715 * Cancels node and throws exception on failure. 1716 * param node the condition node for this wait 1717 * return previous sync state 1718 */ 1719 final int fullyRelease(Node node) { 1720 boolean failed true; 1721 try { 1722 int savedState getState(); 1723 if (release(savedState)) { 1724 failed false; 1725 return savedState; 1726 } else { 1727 throw new IllegalMonitorStateException(); 1728 } 1729 } finally { 1730 if (failed) 1731 node.waitStatus Node.CANCELLED; 1732 } 1733 } 1734 1735 // Instrumentation methods for conditions 1736 1737 /** 1738 * Queries whether the given ConditionObject 1739 * uses this synchronizer as its lock. 1740 * 1741 * param condition the condition 1742 * return tttrue/tt if owned 1743 * throws NullPointerException if the condition is null 1744 */ 1745 public final boolean owns(ConditionObject condition) { 1746 if (condition null) 1747 throw new NullPointerException(); 1748 return condition.isOwnedBy(this); 1749 } 1750 1751 /** 1752 * Queries whether any threads are waiting on the given condition 1753 * associated with this synchronizer. Note that because timeouts 1754 * and interrupts may occur at any time, a tttrue/tt return 1755 * does not guarantee that a future ttsignal/tt will awaken 1756 * any threads. This method is designed primarily for use in 1757 * monitoring of the system state. 1758 * 1759 * param condition the condition 1760 * return tttrue/tt if there are any waiting threads 1761 * throws IllegalMonitorStateException if exclusive synchronization 1762 * is not held 1763 * throws IllegalArgumentException if the given condition is 1764 * not associated with this synchronizer 1765 * throws NullPointerException if the condition is null 1766 */ 1767 public final boolean hasWaiters(ConditionObject condition) { 1768 if (!owns(condition)) 1769 throw new IllegalArgumentException(Not owner); 1770 return condition.hasWaiters(); 1771 } 1772 1773 /** 1774 * Returns an estimate of the number of threads waiting on the 1775 * given condition associated with this synchronizer. Note that 1776 * because timeouts and interrupts may occur at any time, the 1777 * estimate serves only as an upper bound on the actual number of 1778 * waiters. This method is designed for use in monitoring of the 1779 * system state, not for synchronization control. 1780 * 1781 * param condition the condition 1782 * return the estimated number of waiting threads 1783 * throws IllegalMonitorStateException if exclusive synchronization 1784 * is not held 1785 * throws IllegalArgumentException if the given condition is 1786 * not associated with this synchronizer 1787 * throws NullPointerException if the condition is null 1788 */ 1789 public final int getWaitQueueLength(ConditionObject condition) { 1790 if (!owns(condition)) 1791 throw new IllegalArgumentException(Not owner); 1792 return condition.getWaitQueueLength(); 1793 } 1794 1795 /** 1796 * Returns a collection containing those threads that may be 1797 * waiting on the given condition associated with this 1798 * synchronizer. Because the actual set of threads may change 1799 * dynamically while constructing this result, the returned 1800 * collection is only a best-effort estimate. The elements of the 1801 * returned collection are in no particular order. 1802 * 1803 * param condition the condition 1804 * return the collection of threads 1805 * throws IllegalMonitorStateException if exclusive synchronization 1806 * is not held 1807 * throws IllegalArgumentException if the given condition is 1808 * not associated with this synchronizer 1809 * throws NullPointerException if the condition is null 1810 */ 1811 public final CollectionThread getWaitingThreads(ConditionObject condition) { 1812 if (!owns(condition)) 1813 throw new IllegalArgumentException(Not owner); 1814 return condition.getWaitingThreads(); 1815 } 1816 1817 /** 1818 * Condition implementation for a {link 1819 * AbstractQueuedSynchronizer} serving as the basis of a {link 1820 * Lock} implementation. 1821 * 1822 * pMethod documentation for this class describes mechanics, 1823 * not behavioral specifications from the point of view of Lock 1824 * and Condition users. Exported versions of this class will in 1825 * general need to be accompanied by documentation describing 1826 * condition semantics that rely on those of the associated 1827 * ttAbstractQueuedSynchronizer/tt. 1828 * 1829 * pThis class is Serializable, but all fields are transient, 1830 * so deserialized conditions have no waiters. 1831 */ 1832 public class ConditionObject implements Condition, java.io.Serializable { 1833 private static final long serialVersionUID 1173984872572414699L; 1834 /** First node of condition queue. */ 1835 private transient Node firstWaiter; 1836 /** Last node of condition queue. */ 1837 private transient Node lastWaiter; 1838 1839 /** 1840 * Creates a new ttConditionObject/tt instance. 1841 */ 1842 public ConditionObject() { } 1843 1844 // Internal methods 1845 1846 /** 1847 * Adds a new waiter to wait queue. 1848 * return its new wait node 1849 */ 1850 private Node addConditionWaiter() { 1851 Node t lastWaiter; 1852 // If lastWaiter is cancelled, clean out. 1853 if (t ! null t.waitStatus ! Node.CONDITION) { 1854 unlinkCancelledWaiters(); 1855 t lastWaiter; 1856 } 1857 Node node new Node(Thread.currentThread(), Node.CONDITION); 1858 if (t null) 1859 firstWaiter node; 1860 else 1861 t.nextWaiter node; 1862 lastWaiter node; 1863 return node; 1864 } 1865 1866 /** 1867 * Removes and transfers nodes until hit non-cancelled one or 1868 * null. Split out from signal in part to encourage compilers 1869 * to inline the case of no waiters. 1870 * param first (non-null) the first node on condition queue 1871 */ 1872 private void doSignal(Node first) { 1873 do { 1874 if ( (firstWaiter first.nextWaiter) null) 1875 lastWaiter null; 1876 first.nextWaiter null; 1877 } while (!transferForSignal(first) 1878 (first firstWaiter) ! null); 1879 } 1880 1881 /** 1882 * Removes and transfers all nodes. 1883 * param first (non-null) the first node on condition queue 1884 */ 1885 private void doSignalAll(Node first) { 1886 lastWaiter firstWaiter null; 1887 do { 1888 Node next first.nextWaiter; 1889 first.nextWaiter null; 1890 transferForSignal(first); 1891 first next; 1892 } while (first ! null); 1893 } 1894 1895 /** 1896 * Unlinks cancelled waiter nodes from condition queue. 1897 * Called only while holding lock. This is called when 1898 * cancellation occurred during condition wait, and upon 1899 * insertion of a new waiter when lastWaiter is seen to have 1900 * been cancelled. This method is needed to avoid garbage 1901 * retention in the absence of signals. So even though it may 1902 * require a full traversal, it comes into play only when 1903 * timeouts or cancellations occur in the absence of 1904 * signals. It traverses all nodes rather than stopping at a 1905 * particular target to unlink all pointers to garbage nodes 1906 * without requiring many re-traversals during cancellation 1907 * storms. 1908 */ 1909 private void unlinkCancelledWaiters() { 1910 Node t firstWaiter; 1911 Node trail null; 1912 while (t ! null) { 1913 Node next t.nextWaiter; 1914 if (t.waitStatus ! Node.CONDITION) { 1915 t.nextWaiter null; 1916 if (trail null) 1917 firstWaiter next; 1918 else 1919 trail.nextWaiter next; 1920 if (next null) 1921 lastWaiter trail; 1922 } 1923 else 1924 trail t; 1925 t next; 1926 } 1927 } 1928 1929 // public methods 1930 1931 /** 1932 * Moves the longest-waiting thread, if one exists, from the 1933 * wait queue for this condition to the wait queue for the 1934 * owning lock. 1935 * 1936 * throws IllegalMonitorStateException if {link #isHeldExclusively} 1937 * returns {code false} 1938 */ 1939 public final void signal() { 1940 if (!isHeldExclusively()) 1941 throw new IllegalMonitorStateException(); 1942 Node first firstWaiter; 1943 if (first ! null) 1944 doSignal(first); 1945 } 1946 1947 /** 1948 * Moves all threads from the wait queue for this condition to 1949 * the wait queue for the owning lock. 1950 * 1951 * throws IllegalMonitorStateException if {link #isHeldExclusively} 1952 * returns {code false} 1953 */ 1954 public final void signalAll() { 1955 if (!isHeldExclusively()) 1956 throw new IllegalMonitorStateException(); 1957 Node first firstWaiter; 1958 if (first ! null) 1959 doSignalAll(first); 1960 } 1961 1962 /** 1963 * Implements uninterruptible condition wait. 1964 * ol 1965 * li Save lock state returned by {link #getState}. 1966 * li Invoke {link #release} with 1967 * saved state as argument, throwing 1968 * IllegalMonitorStateException if it fails. 1969 * li Block until signalled. 1970 * li Reacquire by invoking specialized version of 1971 * {link #acquire} with saved state as argument. 1972 * /ol 1973 */ 1974 public final void awaitUninterruptibly() { 1975 Node node addConditionWaiter(); 1976 int savedState fullyRelease(node); 1977 boolean interrupted false; 1978 while (!isOnSyncQueue(node)) { 1979 LockSupport.park(this); 1980 if (Thread.interrupted()) 1981 interrupted true; 1982 } 1983 if (acquireQueued(node, savedState) || interrupted) 1984 selfInterrupt(); 1985 } 1986 1987 /* 1988 * For interruptible waits, we need to track whether to throw 1989 * InterruptedException, if interrupted while blocked on 1990 * condition, versus reinterrupt current thread, if 1991 * interrupted while blocked waiting to re-acquire. 1992 */ 1993 1994 /** Mode meaning to reinterrupt on exit from wait */ 1995 private static final int REINTERRUPT 1; 1996 /** Mode meaning to throw InterruptedException on exit from wait */ 1997 private static final int THROW_IE -1; 1998 1999 /** 2000 * Checks for interrupt, returning THROW_IE if interrupted 2001 * before signalled, REINTERRUPT if after signalled, or 2002 * 0 if not interrupted. 2003 */ 2004 private int checkInterruptWhileWaiting(Node node) { 2005 return Thread.interrupted() ? 2006 (transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) : 2007 0; 2008 } 2009 2010 /** 2011 * Throws InterruptedException, reinterrupts current thread, or 2012 * does nothing, depending on mode. 2013 */ 2014 private void reportInterruptAfterWait(int interruptMode) 2015 throws InterruptedException { 2016 if (interruptMode THROW_IE) 2017 throw new InterruptedException(); 2018 else if (interruptMode REINTERRUPT) 2019 selfInterrupt(); 2020 } 2021 2022 /** 2023 * Implements interruptible condition wait. 2024 * ol 2025 * li If current thread is interrupted, throw InterruptedException. 2026 * li Save lock state returned by {link #getState}. 2027 * li Invoke {link #release} with 2028 * saved state as argument, throwing 2029 * IllegalMonitorStateException if it fails. 2030 * li Block until signalled or interrupted. 2031 * li Reacquire by invoking specialized version of 2032 * {link #acquire} with saved state as argument. 2033 * li If interrupted while blocked in step 4, throw InterruptedException. 2034 * /ol 2035 */ 2036 public final void await() throws InterruptedException { 2037 if (Thread.interrupted()) 2038 throw new InterruptedException(); 2039 Node node addConditionWaiter(); 2040 int savedState fullyRelease(node); 2041 int interruptMode 0; 2042 while (!isOnSyncQueue(node)) { 2043 LockSupport.park(this); 2044 if ((interruptMode checkInterruptWhileWaiting(node)) ! 0) 2045 break; 2046 } 2047 if (acquireQueued(node, savedState) interruptMode ! THROW_IE) 2048 interruptMode REINTERRUPT; 2049 if (node.nextWaiter ! null) // clean up if cancelled 2050 unlinkCancelledWaiters(); 2051 if (interruptMode ! 0) 2052 reportInterruptAfterWait(interruptMode); 2053 } 2054 2055 /** 2056 * Implements timed condition wait. 2057 * ol 2058 * li If current thread is interrupted, throw InterruptedException. 2059 * li Save lock state returned by {link #getState}. 2060 * li Invoke {link #release} with 2061 * saved state as argument, throwing 2062 * IllegalMonitorStateException if it fails. 2063 * li Block until signalled, interrupted, or timed out. 2064 * li Reacquire by invoking specialized version of 2065 * {link #acquire} with saved state as argument. 2066 * li If interrupted while blocked in step 4, throw InterruptedException. 2067 * /ol 2068 */ 2069 public final long awaitNanos(long nanosTimeout) 2070 throws InterruptedException { 2071 if (Thread.interrupted()) 2072 throw new InterruptedException(); 2073 Node node addConditionWaiter(); 2074 int savedState fullyRelease(node); 2075 long lastTime System.nanoTime(); 2076 int interruptMode 0; 2077 while (!isOnSyncQueue(node)) { 2078 if (nanosTimeout 0L) { 2079 transferAfterCancelledWait(node); 2080 break; 2081 } 2082 LockSupport.parkNanos(this, nanosTimeout); 2083 if ((interruptMode checkInterruptWhileWaiting(node)) ! 0) 2084 break; 2085 2086 long now System.nanoTime(); 2087 nanosTimeout - now - lastTime; 2088 lastTime now; 2089 } 2090 if (acquireQueued(node, savedState) interruptMode ! THROW_IE) 2091 interruptMode REINTERRUPT; 2092 if (node.nextWaiter ! null) 2093 unlinkCancelledWaiters(); 2094 if (interruptMode ! 0) 2095 reportInterruptAfterWait(interruptMode); 2096 return nanosTimeout - (System.nanoTime() - lastTime); 2097 } 2098 2099 /** 2100 * Implements absolute timed condition wait. 2101 * ol 2102 * li If current thread is interrupted, throw InterruptedException. 2103 * li Save lock state returned by {link #getState}. 2104 * li Invoke {link #release} with 2105 * saved state as argument, throwing 2106 * IllegalMonitorStateException if it fails. 2107 * li Block until signalled, interrupted, or timed out. 2108 * li Reacquire by invoking specialized version of 2109 * {link #acquire} with saved state as argument. 2110 * li If interrupted while blocked in step 4, throw InterruptedException. 2111 * li If timed out while blocked in step 4, return false, else true. 2112 * /ol 2113 */ 2114 public final boolean awaitUntil(Date deadline) 2115 throws InterruptedException { 2116 if (deadline null) 2117 throw new NullPointerException(); 2118 long abstime deadline.getTime(); 2119 if (Thread.interrupted()) 2120 throw new InterruptedException(); 2121 Node node addConditionWaiter(); 2122 int savedState fullyRelease(node); 2123 boolean timedout false; 2124 int interruptMode 0; 2125 while (!isOnSyncQueue(node)) { 2126 if (System.currentTimeMillis() abstime) { 2127 timedout transferAfterCancelledWait(node); 2128 break; 2129 } 2130 LockSupport.parkUntil(this, abstime); 2131 if ((interruptMode checkInterruptWhileWaiting(node)) ! 0) 2132 break; 2133 } 2134 if (acquireQueued(node, savedState) interruptMode ! THROW_IE) 2135 interruptMode REINTERRUPT; 2136 if (node.nextWaiter ! null) 2137 unlinkCancelledWaiters(); 2138 if (interruptMode ! 0) 2139 reportInterruptAfterWait(interruptMode); 2140 return !timedout; 2141 } 2142 2143 /** 2144 * Implements timed condition wait. 2145 * ol 2146 * li If current thread is interrupted, throw InterruptedException. 2147 * li Save lock state returned by {link #getState}. 2148 * li Invoke {link #release} with 2149 * saved state as argument, throwing 2150 * IllegalMonitorStateException if it fails. 2151 * li Block until signalled, interrupted, or timed out. 2152 * li Reacquire by invoking specialized version of 2153 * {link #acquire} with saved state as argument. 2154 * li If interrupted while blocked in step 4, throw InterruptedException. 2155 * li If timed out while blocked in step 4, return false, else true. 2156 * /ol 2157 */ 2158 public final boolean await(long time, TimeUnit unit) 2159 throws InterruptedException { 2160 if (unit null) 2161 throw new NullPointerException(); 2162 long nanosTimeout unit.toNanos(time); 2163 if (Thread.interrupted()) 2164 throw new InterruptedException(); 2165 Node node addConditionWaiter(); 2166 int savedState fullyRelease(node); 2167 long lastTime System.nanoTime(); 2168 boolean timedout false; 2169 int interruptMode 0; 2170 while (!isOnSyncQueue(node)) { 2171 if (nanosTimeout 0L) { 2172 timedout transferAfterCancelledWait(node); 2173 break; 2174 } 2175 if (nanosTimeout spinForTimeoutThreshold) 2176 LockSupport.parkNanos(this, nanosTimeout); 2177 if ((interruptMode checkInterruptWhileWaiting(node)) ! 0) 2178 break; 2179 long now System.nanoTime(); 2180 nanosTimeout - now - lastTime; 2181 lastTime now; 2182 } 2183 if (acquireQueued(node, savedState) interruptMode ! THROW_IE) 2184 interruptMode REINTERRUPT; 2185 if (node.nextWaiter ! null) 2186 unlinkCancelledWaiters(); 2187 if (interruptMode ! 0) 2188 reportInterruptAfterWait(interruptMode); 2189 return !timedout; 2190 } 2191 2192 // support for instrumentation 2193 2194 /** 2195 * Returns true if this condition was created by the given 2196 * synchronization object. 2197 * 2198 * return {code true} if owned 2199 */ 2200 final boolean isOwnedBy(AbstractQueuedSynchronizer sync) { 2201 return sync AbstractQueuedSynchronizer.this; 2202 } 2203 2204 /** 2205 * Queries whether any threads are waiting on this condition. 2206 * Implements {link AbstractQueuedSynchronizer#hasWaiters}. 2207 * 2208 * return {code true} if there are any waiting threads 2209 * throws IllegalMonitorStateException if {link #isHeldExclusively} 2210 * returns {code false} 2211 */ 2212 protected final boolean hasWaiters() { 2213 if (!isHeldExclusively()) 2214 throw new IllegalMonitorStateException(); 2215 for (Node w firstWaiter; w ! null; w w.nextWaiter) { 2216 if (w.waitStatus Node.CONDITION) 2217 return true; 2218 } 2219 return false; 2220 } 2221 2222 /** 2223 * Returns an estimate of the number of threads waiting on 2224 * this condition. 2225 * Implements {link AbstractQueuedSynchronizer#getWaitQueueLength}. 2226 * 2227 * return the estimated number of waiting threads 2228 * throws IllegalMonitorStateException if {link #isHeldExclusively} 2229 * returns {code false} 2230 */ 2231 protected final int getWaitQueueLength() { 2232 if (!isHeldExclusively()) 2233 throw new IllegalMonitorStateException(); 2234 int n 0; 2235 for (Node w firstWaiter; w ! null; w w.nextWaiter) { 2236 if (w.waitStatus Node.CONDITION) 2237 n; 2238 } 2239 return n; 2240 } 2241 2242 /** 2243 * Returns a collection containing those threads that may be 2244 * waiting on this Condition. 2245 * Implements {link AbstractQueuedSynchronizer#getWaitingThreads}. 2246 * 2247 * return the collection of threads 2248 * throws IllegalMonitorStateException if {link #isHeldExclusively} 2249 * returns {code false} 2250 */ 2251 protected final CollectionThread getWaitingThreads() { 2252 if (!isHeldExclusively()) 2253 throw new IllegalMonitorStateException(); 2254 ArrayListThread list new ArrayListThread(); 2255 for (Node w firstWaiter; w ! null; w w.nextWaiter) { 2256 if (w.waitStatus Node.CONDITION) { 2257 Thread t w.thread; 2258 if (t ! null) 2259 list.add(t); 2260 } 2261 } 2262 return list; 2263 } 2264 } 2265 2266 /** 2267 * Setup to support compareAndSet. We need to natively implement 2268 * this here: For the sake of permitting future enhancements, we 2269 * cannot explicitly subclass AtomicInteger, which would be 2270 * efficient and useful otherwise. So, as the lesser of evils, we 2271 * natively implement using hotspot intrinsics API. And while we 2272 * are at it, we do the same for other CASable fields (which could 2273 * otherwise be done with atomic field updaters). 2274 */ 2275 private static final Unsafe unsafe Unsafe.getUnsafe(); 2276 private static final long stateOffset; 2277 private static final long headOffset; 2278 private static final long tailOffset; 2279 private static final long waitStatusOffset; 2280 private static final long nextOffset; 2281 2282 static { 2283 try { 2284 stateOffset unsafe.objectFieldOffset 2285 (AbstractQueuedSynchronizer.class.getDeclaredField(state)); 2286 headOffset unsafe.objectFieldOffset 2287 (AbstractQueuedSynchronizer.class.getDeclaredField(head)); 2288 tailOffset unsafe.objectFieldOffset 2289 (AbstractQueuedSynchronizer.class.getDeclaredField(tail)); 2290 waitStatusOffset unsafe.objectFieldOffset 2291 (Node.class.getDeclaredField(waitStatus)); 2292 nextOffset unsafe.objectFieldOffset 2293 (Node.class.getDeclaredField(next)); 2294 2295 } catch (Exception ex) { throw new Error(ex); } 2296 } 2297 2298 /** 2299 * CAS head field. Used only by enq. 2300 */ 2301 private final boolean compareAndSetHead(Node update) { 2302 return unsafe.compareAndSwapObject(this, headOffset, null, update); 2303 } 2304 2305 /** 2306 * CAS tail field. Used only by enq. 2307 */ 2308 private final boolean compareAndSetTail(Node expect, Node update) { 2309 return unsafe.compareAndSwapObject(this, tailOffset, expect, update); 2310 } 2311 2312 /** 2313 * CAS waitStatus field of a node. 2314 */ 2315 private static final boolean compareAndSetWaitStatus(Node node, 2316 int expect, 2317 int update) { 2318 return unsafe.compareAndSwapInt(node, waitStatusOffset, 2319 expect, update); 2320 } 2321 2322 /** 2323 * CAS next field of a node. 2324 */ 2325 private static final boolean compareAndSetNext(Node node, 2326 Node expect, 2327 Node update) { 2328 return unsafe.compareAndSwapObject(node, nextOffset, expect, update); 2329 } 2330 }   释放公平锁(基于JDK1.7.0_40) 1. unlock() unlock()在ReentrantLock.java中实现的源码如下 public void unlock() {sync.release(1); } 说明 unlock()是解锁函数它是通过AQS的release()函数来实现的。 在这里“1”的含义和“获取锁的函数acquire(1)的含义”一样它是设置“释放锁的状态”的参数。由于“公平锁”是可重入的所以对于同一个线程每释放锁一次锁的状态-1。 关于AQS, ReentrantLock 和 sync的关系如下 public class ReentrantLock implements Lock, java.io.Serializable {private final Sync sync;abstract static class Sync extends AbstractQueuedSynchronizer {...}... } 从中我们发现sync是ReentrantLock.java中的成员对象而Sync是AQS的子类。   2. release() release()在AQS中实现的源码如下 public final boolean release(int arg) {if (tryRelease(arg)) {Node h head;if (h ! null h.waitStatus ! 0)unparkSuccessor(h);return true;}return false; } 说明 release()会先调用tryRelease()来尝试释放当前线程锁持有的锁。成功的话则唤醒后继等待线程并返回true。否则直接返回false。   3. tryRelease() tryRelease()在ReentrantLock.java的Sync类中实现源码如下 protected final boolean tryRelease(int releases) {// c是本次释放锁之后的状态int c getState() - releases;// 如果“当前线程”不是“锁的持有者”则抛出异常if (Thread.currentThread() ! getExclusiveOwnerThread())throw new IllegalMonitorStateException();boolean free false;// 如果“锁”已经被当前线程彻底释放则设置“锁”的持有者为null即锁是可获取状态。if (c 0) {free true;setExclusiveOwnerThread(null);}// 设置当前线程的锁的状态。setState(c);return free; } 说明 tryRelease()的作用是尝试释放锁。 (01) 如果“当前线程”不是“锁的持有者”则抛出异常。 (02) 如果“当前线程”在本次释放锁操作之后对锁的拥有状态是0(即当前线程彻底释放该“锁”)则设置“锁”的持有者为null即锁是可获取状态。同时更新当前线程的锁的状态为0。 getState(), setState()在前一章已经介绍过这里不再说明。 getExclusiveOwnerThread(), setExclusiveOwnerThread()在AQS的父类AbstractOwnableSynchronizer.java中定义源码如下 public abstract class AbstractOwnableSynchronizerimplements java.io.Serializable {// “锁”的持有线程private transient Thread exclusiveOwnerThread;// 设置“锁的持有线程”为tprotected final void setExclusiveOwnerThread(Thread t) {exclusiveOwnerThread t;}// 获取“锁的持有线程”protected final Thread getExclusiveOwnerThread() {return exclusiveOwnerThread;}... }   4. unparkSuccessor() 在release()中“当前线程”释放锁成功的话会唤醒当前线程的后继线程。 根据CLH队列的FIFO规则“当前线程”(即已经获取锁的线程)肯定是head如果CLH队列非空的话则唤醒锁的下一个等待线程。 下面看看unparkSuccessor()的源码它在AQS中实现。 private void unparkSuccessor(Node node) {// 获取当前线程的状态int ws node.waitStatus;// 如果状态0则设置状态0if (ws 0)compareAndSetWaitStatus(node, ws, 0);//获取当前节点的“有效的后继节点”无效的话则通过for循环进行获取。// 这里的有效是指“后继节点对应的线程状态0”Node s node.next;if (s null || s.waitStatus 0) {s null;for (Node t tail; t ! null t ! node; t t.prev)if (t.waitStatus 0)s t;}// 唤醒“后继节点对应的线程”if (s ! null)LockSupport.unpark(s.thread); } 说明 unparkSuccessor()的作用是“唤醒当前线程的后继线程”。后继线程被唤醒之后就可以获取该锁并恢复运行了。 关于node.waitStatus的说明请参考“上一章关于Node类的介绍”。   总结 “释放锁”的过程相对“获取锁”的过程比较简单。释放锁时主要进行的操作是更新当前线程对应的锁的状态。如果当前线程对锁已经彻底释放则设置“锁”的持有线程为null设置当前线程的状态为空然后唤醒后继线程。
http://www.w-s-a.com/news/499044/

相关文章:

  • wordpress 调用时间做网站seo的公司哪家好
  • 手机上网站搭建网站账户系统
  • 西乡网站的建设柳州建站
  • 宁夏网站建设怎么样互联网 网站设计
  • 成都关键词seo推广平台手机端关键词排名优化软件
  • 学做软件的网站卡盟平台
  • 网站构建建设案例展示关于做服饰网站的首页
  • 如何建设网站论坛凡科建站手机版登录
  • 建设银行门户网站惠州公司网站建设价格
  • 用python开发网站网站如何取消验证码
  • 公司做企业网站互联网建网站
  • 建网站需要的费用公司注册后怎么做网站
  • 宣传电脑的网站开发运动网站建设教程
  • 网站建设公司都会有哪些花销做网站公司商丘
  • 网站风格有哪些软件定制和开发
  • 公司网络维护具体做什么河南网站推广优化公司哪家好
  • 中学生制作的网站常平哪里有招计算机网站开发的
  • 原创网站模版苏州响应式网站建设
  • 做海报在哪个网站可以找素材网址申请注册方法
  • 网站建设分哪些类别别人做的网站不能用
  • 做网站网站会怎么样全国高校校园网站联盟建设
  • 整站下载器 做网站地图地产项目网站设计
  • 创意设计网站公司手机wap网站建设多少钱
  • 甘肃省第八建设集团公司网站seo高级优化方法
  • 精美的商城网站介绍最多人用的wordpress子主题
  • 检察门户网站建设情况俄外长抵达北京
  • 老电脑做网站服务器网站在线留言如何做
  • 南宁广告公司网站建设小程序源码破解
  • 沛县做网站xlec网站建设开发方式包括哪些方面
  • 山西网站建设 哪家好四川城乡和建设厅网站