当前位置: 首页 > news >正文

网站推广适合哪种公司做最新国际热点新闻

网站推广适合哪种公司做,最新国际热点新闻,常州男科医院哪一个好,oracle 网站开发20240115如何在线识别俄语字幕#xff1f; 2024/1/15 21:25 百度搜索#xff1a;俄罗斯语 音频 在线识别 字幕 Bilibili#xff1a;俄语AI字幕识别 音视频转文字 字幕小工具V1.2 BING#xff1a;音视频转文字 字幕小工具V1.2 https://www.bilibili.com/video/BV1d34y1F7…20240115如何在线识别俄语字幕 2024/1/15 21:25 百度搜索俄罗斯语 音频 在线识别 字幕 Bilibili俄语AI字幕识别 音视频转文字 字幕小工具V1.2 BING音视频转文字 字幕小工具V1.2 https://www.bilibili.com/video/BV1d34y1F7qA https://www.bilibili.com/video/BV1d34y1F7qA/?p4vd_source4a6b675fa22dfa306da59f67b1f22616 音|视频转文字|字幕小工具V1.2新增whisper-large-V3模型支持100多种语言自动翻译解压即用 万能君的软件库 主要分享自己做的一些有意思的原创工具工具追求解压即用希望对您有所帮助 解压即用的音|视频转文字|字幕小工具下载地址关注 私信我字幕即可获取。 解压即用的音|视频转文字|字幕小工具下载地址关注 私信我字幕即可获取。 软件制作不易不用三连有个免费的赞就行 音视频转文字字幕小工具V1.2下载 win10、win11 1夸克网盘链接https://pan.quark.cn/s/82b36b6adfa7提取码JsyQ 2百度网盘链接https://pan.baidu.com/s/1UOV0orx6GhgMfoyETcNe0g?pwd9p2x 开发不易有条件的可以点击软件里的打赏按钮进行打赏O(∩_∩)O https://github.com/openai/whisperWhisper [Blog] [Paper] [Model card] [Colab example] Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse audio and is also a multitasking model that can perform multilingual speech recognition, speech translation, and language identification. Approach Approach A Transformer sequence-to-sequence model is trained on various speech processing tasks, including multilingual speech recognition, speech translation, spoken language identification, and voice activity detection. These tasks are jointly represented as a sequence of tokens to be predicted by the decoder, allowing a single model to replace many stages of a traditional speech-processing pipeline. The multitask training format uses a set of special tokens that serve as task specifiers or classification targets. Setup We used Python 3.9.9 and PyTorch 1.10.1 to train and test our models, but the codebase is expected to be compatible with Python 3.8-3.11 and recent PyTorch versions. The codebase also depends on a few Python packages, most notably OpenAIs tiktoken for their fast tokenizer implementation. You can download and install (or update to) the latest release of Whisper with the following command: pip install -U openai-whisper Alternatively, the following command will pull and install the latest commit from this repository, along with its Python dependencies: pip install githttps://github.com/openai/whisper.git  To update the package to the latest version of this repository, please run: pip install --upgrade --no-deps --force-reinstall githttps://github.com/openai/whisper.git It also requires the command-line tool ffmpeg to be installed on your system, which is available from most package managers: # on Ubuntu or Debian sudo apt update sudo apt install ffmpeg # on Arch Linux sudo pacman -S ffmpeg # on MacOS using Homebrew (https://brew.sh/) brew install ffmpeg # on Windows using Chocolatey (https://chocolatey.org/) choco install ffmpeg # on Windows using Scoop (https://scoop.sh/) scoop install ffmpeg You may need rust installed as well, in case tiktoken does not provide a pre-built wheel for your platform. If you see installation errors during the pip install command above, please follow the Getting started page to install Rust development environment. Additionally, you may need to configure the PATH environment variable, e.g. export PATH$HOME/.cargo/bin:$PATH. If the installation fails with No module named setuptools_rust, you need to install setuptools_rust, e.g. by running: pip install setuptools-rust Available models and languages There are five model sizes, four with English-only versions, offering speed and accuracy tradeoffs. Below are the names of the available models and their approximate memory requirements and inference speed relative to the large model; actual speed may vary depending on many factors including the available hardware. Size    Parameters    English-only model    Multilingual model    Required VRAM    Relative speed tiny    39 M    tiny.en    tiny    ~1 GB    ~32x base    74 M    base.en    base    ~1 GB    ~16x small    244 M    small.en    small    ~2 GB    ~6x medium    769 M    medium.en    medium    ~5 GB    ~2x large    1550 M    N/A    large    ~10 GB    1x The .en models for English-only applications tend to perform better, especially for the tiny.en and base.en models. We observed that the difference becomes less significant for the small.en and medium.en models. Whispers performance varies widely depending on the language. The figure below shows a performance breakdown of large-v3 and large-v2 models by language, using WERs (word error rates) or CER (character error rates, shown in Italic) evaluated on the Common Voice 15 and Fleurs datasets. Additional WER/CER metrics corresponding to the other models and datasets can be found in Appendix D.1, D.2, and D.4 of the paper, as well as the BLEU (Bilingual Evaluation Understudy) scores for translation in Appendix D.3. WER breakdown by language Command-line usage The following command will transcribe speech in audio files, using the medium model: whisper audio.flac audio.mp3 audio.wav --model medium The default setting (which selects the small model) works well for transcribing English. To transcribe an audio file containing non-English speech, you can specify the language using the --language option: whisper japanese.wav --language Japanese Adding --task translate will translate the speech into English: whisper japanese.wav --language Japanese --task translate Run the following to view all available options: whisper --help See tokenizer.py for the list of all available languages. Python usage Transcription can also be performed within Python: import whisper model whisper.load_model(base) result model.transcribe(audio.mp3) print(result[text]) Internally, the transcribe() method reads the entire file and processes the audio with a sliding 30-second window, performing autoregressive sequence-to-sequence predictions on each window. Below is an example usage of whisper.detect_language() and whisper.decode() which provide lower-level access to the model. import whisper model whisper.load_model(base) # load audio and pad/trim it to fit 30 seconds audio whisper.load_audio(audio.mp3) audio whisper.pad_or_trim(audio) # make log-Mel spectrogram and move to the same device as the model mel whisper.log_mel_spectrogram(audio).to(model.device) # detect the spoken language _, probs model.detect_language(mel) print(fDetected language: {max(probs, keyprobs.get)}) # decode the audio options whisper.DecodingOptions() result whisper.decode(model, mel, options) # print the recognized text print(result.text) More examples Please use the Show and tell category in Discussions for sharing more example usages of Whisper and third-party extensions such as web demos, integrations with other tools, ports for different platforms, etc. License Whispers code and model weights are released under the MIT License. See LICENSE for further details. 百度搜索whisper ubuntuhttps://blog.csdn.net/huiguo_/article/details/133382558 ubuntu使用whisper和funASR-语者分离-二值化 https://blog.csdn.net/yangyi139926/article/details/135110390 ubuntu16.04安装语音识别whisper及whisper-ctranslate2工具填坑篇 https://zhuanlan.zhihu.com/p/664661510 基于arm架构图为智盒T906Gubuntu20.04搭建open-ai Whisper并实现语音转文字 https://www.ncnynl.com/archives/202310/6051.html ROS2与语音交互教程-利用whisper实现ros2下发布语音转文字话题 参考资料 https://www.bilibili.com/video/BV14C4y1F7YM https://www.bilibili.com/video/BV14C4y1F7YM/?spm_id_from333.337.search-card.all.clickvd_source4a6b675fa22dfa306da59f67b1f22616 音频视频转换字幕支持100多种语言识别与翻译支持离线 这款音频视频转字幕工具支持100多种语言识别与翻译翻译识别的语言支持英语、日语、韩语、德语、俄语等等支持纯离线运行。 这款音频视频转字幕工具基于openAI的whisper的衍生项目faster whisper而做的操作简单转换完成后输出目录会生成srt和TXT的字幕格式文本。 https://www.bilibili.com/video/BV1WR4y1e7Fh/?spm_id_from333.337.search-card.all.clickvd_source4a6b675fa22dfa306da59f67b1f22616 沙拉俄语·字幕插件如何在手机和电脑上使用 俄语 音频 识别 https://www.bilibili.com/read/cv17827622/ 俄语学习俄语音视频转文字vlc player 字幕专家 【收费】 https://gglot.com/zh/russian-subtitles/ 俄语字幕 准确的俄语字幕轻松在线生成 【免费的工具额外收费了】 https://www.98dw.com/102.html https://www.bilibili.com/read/cv28458016/?jump_opus1 音视频转字幕小工具V1.2支持上百种语言翻译神器 基于openAI的whisper的衍生项目faster whisper做成支持100多种语言识别与翻译。 软件纯离线运行 1、软件的界面很简单操作步骤也说的很清楚了 2、转换完成后输出目录会有srt字幕格式和txt纯文本格式。 3、测试一些视频语音翻译的字幕效果截图 翻译识别语言涉及到了日语、英语、韩语、俄语、德语等。
http://www.w-s-a.com/news/828363/

相关文章:

  • 东莞市国外网站建设多少钱wordpress 多媒体插件
  • c2c商城网站建设公司做水果生意去哪个网站
  • 做网站服务器有哪些电子商务网站建立
  • 网站开发的具体流程原材料价格查询网站
  • 深圳响应式网站建设深圳网站建设定制开发 超凡科技
  • 网站建设报价怎么差别那么大wordpress产品属性搭配
  • 高校网站建设情况报告范文pc建站网站
  • 做网站美工要学什么广东省建设厅网站首页
  • 深圳网站设计十年乐云seo网站建设 竞赛 方案
  • 新乡移动网站建设wordpress输出某一分类的文章
  • 花店网站开发设计的项目结构重庆网站建设培训班
  • 做网站的技术体系投资者互动平台官网
  • 北京网站建设公司哪家实惠企查查在线查询入口
  • 毕业设计做网站怎么样非微信官方网页自己做的网站
  • 昆明网站多端小程序设计重庆市住房和城乡建设厅网站
  • 网站制作技术人员国际新闻最新10条
  • 做同城特价的网站wordpress后台能修改模板文件
  • 网站信息可以边建设边组织产品展示网站源码php
  • 电子商务网站规划从哪些方面入手途牛企业网站建设方案
  • 莱阳网站定制易语言可以做网站嘛
  • 购物网站开发意义上海中小企业服务中心官网
  • 网站备案证书如何打开江苏网站建设电话
  • 深圳网站建设乐云seo搜索引擎优化seo目的
  • 中山城市建设集团网站网站建设设计基础
  • 网站开发流程莆田wordpress点播收费
  • 网站未及时续费浙江台州做网站的公司有哪些
  • 二级域名做网站好不好河源建网站
  • 公司网站的作用意义维护建设管理天津平台网站建设费用
  • 建设部网站如何下载国标规范上海影视公司
  • 企业官方网站地址通了网站建设