当前位置: 首页 > news >正文

网站建设毕业设计摘要开发公司网签合同条件

网站建设毕业设计摘要,开发公司网签合同条件,网站运营目标,东莞百度seo在哪里文章目录 一、准备1、安装 autoawq2、模型准备 二、量化config.json 文件变化 三、加载量化后模型量化后的输出原始输出对比 四、查看模型的精度1、查看模型卡2、查看 config.json 中的 torch_dtype3、打印模型信息4、model.dtype 未必是模型精度 一、准备 1、安装 autoawq p… 文章目录 一、准备1、安装 autoawq2、模型准备 二、量化config.json 文件变化 三、加载量化后模型量化后的输出原始输出对比 四、查看模型的精度1、查看模型卡2、查看 config.json 中的 torch_dtype3、打印模型信息4、model.dtype 未必是模型精度 一、准备 1、安装 autoawq pip install autoawq pip install transformers4.47.1 使用的较低版本的 transformers如果执行下面代码有问题可以检查 transformers 版本。 目前我的测试 Python 环境为 3.9 2、模型准备 这里以 mistralai/Mistral-7B-Instruct-v0.2 为例 如果下载有问题可以前往模型界面查看是否需要申请权限https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2 后面代码会自动下载模型你也可以提前下载模型 huggingface-cli download mistralai/Mistral-7B-Instruct-v0.2如果网络受限可以设置镜像地址到环境变量 export HF_ENDPOINThttps://hf-mirror.com二、量化 from awq import AutoAWQForCausalLM from transformers import AutoTokenizermodel_path mistralai/Mistral-7B-Instruct-v0.2 quant_path mistral-instruct-v0.2-awq quant_config { zero_point: True, q_group_size: 128, w_bit: 4, version: GEMM }# Load model model AutoAWQForCausalLM.from_pretrained(model_path) tokenizer AutoTokenizer.from_pretrained(model_path, trust_remote_codeTrue)# 查看模型类型 model.dtype # torch.float32 - 32-bitFP32 # Quantize model.quantize(tokenizer, quant_configquant_config)# Save quantized model model.save_quantized(quant_path) tokenizer.save_pretrained(quant_path)print(fModel is quantized and saved at {quant_path})quant_config 也可以写成 from transformers import AwqConfig, AutoConfig quantization_config AwqConfig(bitsquant_config[w_bit],group_sizequant_config[q_group_size],zero_pointquant_config[zero_point],versionquant_config[version].lower(), ).to_dict()model.model.config.quantization_config quantization_configconfig.json 文件变化 config.json 文件会变成下方的样子 相比原来的文件多出 quantization_config 内容其中 quant_method: awq {_name_or_path: /home/wx/.cache/huggingface/hub/models--mistralai--Mistral-7B-Instruct-v0.2/snapshots/3ad372fc79158a2148299e3318516c786aeded6c,architectures: [MistralForCausalLM],attention_dropout: 0.0,bos_token_id: 1,eos_token_id: 2,head_dim: 128,hidden_act: silu,hidden_size: 4096,initializer_range: 0.02,intermediate_size: 14336,max_position_embeddings: 32768,model_type: mistral,num_attention_heads: 32,num_hidden_layers: 32,num_key_value_heads: 8,quantization_config: {bits: 4,group_size: 128,modules_to_not_convert: null,quant_method: awq,version: gemm,zero_point: true},rms_norm_eps: 1e-05,rope_theta: 1000000.0,sliding_window: null,tie_word_embeddings: false,torch_dtype: bfloat16,transformers_version: 4.47.1,use_cache: false,vocab_size: 32000 } 原始 config.json {architectures: [MistralForCausalLM],attention_dropout: 0.0,bos_token_id: 1,eos_token_id: 2,hidden_act: silu,hidden_size: 4096,initializer_range: 0.02,intermediate_size: 14336,max_position_embeddings: 32768,model_type: mistral,num_attention_heads: 32,num_hidden_layers: 32,num_key_value_heads: 8,rms_norm_eps: 1e-05,rope_theta: 1000000.0,sliding_window: null,tie_word_embeddings: false,torch_dtype: bfloat16,transformers_version: 4.36.0,use_cache: true,vocab_size: 32000 } 三、加载量化后模型 from transformers import AutoModelForCausalLM, AutoTokenizer quant_dir /home/wx/mistral-instruct-v0.2-awq model AutoModelForCausalLM.from_pretrained(quant_dir, device_mapauto) tokenizer AutoTokenizer.from_pretrained(quant_dir, trust_remote_codeTrue)prompt Tell me about blackhole. prompt_templatef{prompt}tokens tokenizer(prompt_template, return_tensorspt).input_ids.cuda()generated_ids model.generate(tokens, do_sampleTrue,temperature0.7,top_p0.95,top_k40,max_new_tokens512) decoded tokenizer.decode(generated_ids[0]) print(decoded)量化后的输出 GPU 占用4550MiB s Tell me about blackhole.A black hole is a region in space where the gravitational pull is so strong that nothing, not even light, can escape. Its called a black hole because it appears black due to the absence of light emanating from it.Black holes are formed when a massive star collapses in on itself after it has exhausted its nuclear fuel. The collapse causes the star to shrink down to an incredibly small size, creating an incredibly dense object. This object is so dense that its gravity warps space and time around it, forming an event horizon, which is the point of no return. Once anything crosses this event horizon, its pulled into the black hole and cannot escape.Black holes come in different sizes, with the smallest being about the size of a star and the largest being billions of times larger than the sun. The largest black hole that has been discovered is located at the center of the galaxy, and its estimated to be about 40 billion times the mass of the sun.Despite their intimidating name, black holes are not necessarily a threat to us. The closest known black hole to Earth is about 1,600 light-years away, which is far enough that we dont need to worry about being sucked in. However, they are fascinating objects that continue to captivate scientists and the general public alike./s原始输出 mistralai/Mistral-7B-Instruct-v0.2 , GPU 占用21988MiB s Tell me about blackhole. Ive heard that it is some sort of astronomical thing, but I dont really understand what it is or how it works.A black hole is an extremely dense object in space that has such strong gravitational pull that nothing, not even light, can escape from it once it gets too close. Black holes are formed when a massive star collapses in on itself after it has exhausted its nuclear fuel and can no longer produce the pressure needed to counteract the force of gravity.The boundary around a black hole from which nothing can escape is called the event horizon. This is not a physical boundary that you can see, but rather a theoretical construct based on the laws of physics. Once an object crosses the event horizon, it is considered to be inside the black hole itself.Black holes are not completely black, as they do emit some form of radiation, but they appear black because they absorb all the light that falls on them. This is due to the fact that the intense gravitational pull causes the surface of the black hole to be at a temperature so hot that it emits very little visible light.Black holes can vary in size, from small ones that are only a few times the mass of the sun, to supermassive black holes that can be millions or even billions of times the mass of the sun. The supermassive black holes are thought to be at the center of most, if not all, galaxies, including our own Milky Way.Despite their fearsome reputation, black holes are not a threat to us here on Earth, as they are typically located billions of light-years away. However, they are fascinating objects of study for astronomers and physicists, who continue to learn new things about them and their role in the universe./s对比 原始4bit 量化后占用磁盘大小14G3.9GGPU 占用21988MiB4550MiB 4.8倍 四、查看模型的精度 对于一个模型我们想知道原始的精度是多少可以用下面几种方式 1、查看模型卡 如https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2 右边的 Safetensors 信息 2、查看 config.json 中的 torch_dtype torch_dtype: bfloat16, 3、打印模型信息 from transformers import AutoTokenizermodel_path mistralai/Mistral-7B-Instruct-v0.2# Load model model AutoAWQForCausalLM.from_pretrained(model_path)for name, param in model.named_parameters():print(f{name}: {param.dtype})break # 只打印第一个权重的数据类型4、model.dtype 未必是模型精度 上述模型model.dtype 打印的结果为 torch.float32表示模型当前是以 32-bit 浮点数FP32精度加载的。 config.json 中的 torch_dtype: bfloat16表示模型设计时支持或推荐使用 bfloat16 精度但实际加载时可能由于环境 或 代码设置 未启用 bfloat16。 2025-03-08六
http://www.w-s-a.com/news/107220/

相关文章:

  • 网站被模仿十堰网站制作公司
  • 怎么样做免费网站个人网站备案幕布
  • 做ppt的动图下载哪些网站制作一个网站需要多少时间
  • 公司网站开发制作备案中的网站
  • 怎么看网站的收录网站开发先前台和后台
  • 合肥市做网站多少钱wordpress网站布置视频
  • 中国建设人才网信息网站软件外包公司好不好
  • 网站建设与管理 市场分析上海网站建设公司排名
  • 怎么将公司网站设成首页网址关键词查询网站
  • 怎么用ps做网站ui邱县专业做网站
  • 国开行网站毕业申请怎么做大连旅顺口旅游攻略
  • 鲜花店网站源码成都专做婚介网站的公司
  • 合肥企业网站建设工哈尔滨公告
  • 华强北 做网站互联网服务平台入口
  • vi设计案例网站微信导航网站 dedecms
  • 青浦区做网站设计图片手绘图片
  • 做网站的基本功制作网站公司推荐
  • 阿里云快速建站教程个人网站 费用
  • 广东购物网站建设微信公众号制作模板免费
  • 阿里国际站韩语网站怎么做让移动网站
  • 北京外包做网站如何报价中国几大网络推广公司
  • 中国建设部网站关于资质wordpress 建app
  • 程序员找工作的网站哈尔滨建设信息网站
  • 公司 网站 方案高考写作网站
  • 网站后台如何登陆网站开发需求逻辑图
  • 市级档案网站建设情况分析server2008做DNS与网站
  • 公积金门户网站建设方案网站建设代理平台怎么做
  • 网站建设知识论文抖音开放平台是干什么的
  • 网站建设期末试卷大气简洁网站
  • 电子商务网站建设报告范文单位做网站怎么做