当前位置: 首页 > news >正文

公司网站如何做宣传西安买公司的网站建设

公司网站如何做宣传,西安买公司的网站建设,咨询网站设计,济南建站公司注意事项无论是自己、家人或是朋友、客户的照片#xff0c;免不了有些是黑白的、被污损的、模糊的#xff0c;总想着修复一下。作为一个程序员 或者 程序员的家属#xff0c;当然都有责任满足他们的需求、实现他们的想法。除了这个#xff0c;学习了本文的成果#xff0c;或许你还…无论是自己、家人或是朋友、客户的照片免不了有些是黑白的、被污损的、模糊的总想着修复一下。作为一个程序员 或者 程序员的家属当然都有责任满足他们的需求、实现他们的想法。除了这个学习了本文的成果或许你还可以用来赚点小钱。 Windows下Python及Anaconda的安装与设置、代码执行之保姆指南https://blog.csdn.net/beijinghorn/article/details/134347642 8 GPEN 8.1 论文Paper GAN Prior Embedded Network for Blind Face Restoration in the Wild Paper: https://arxiv.org/abs/2105.06070 Supplementary: https://www4.comp.polyu.edu.hk/~cslzhang/paper/GPEN-cvpr21-supp.pdf Demo: https://vision.aliyun.com/experience/detail?spma211p3.14020179.J_7524944390.17.66cd4850wVDkUQtagNamefacebodychildrenEnhanceFace ModelScope: https://www.modelscope.cn/models/damo/cv_gpen_image-portrait-enhancement/summary 作者 Tao Yang, Peiran Ren, Xuansong Xie, https://cg.cs.tsinghua.edu.cn/people/~tyang Lei Zhang https://www4.comp.polyu.edu.hk/~cslzhang DAMO Academy, Alibaba Group, Hangzhou, China Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China 8.2 功能 8.2.1 旧照修复Face Restoration     8.2.2 纹理重建Selfie Restoration 8.2.3 人脸重建Face Colorization 8.2.4 划痕修复Face Inpainting 8.2.5 Conditional Image Synthesis (Seg2Face) 8.3 News (2023-02-15) GPEN-BFR-1024 and GPEN-BFR-2048 are now publicly available. Please download them via [ModelScope2]. (2023-02-15) We provide online demos via [ModelScope1] and [ModelScope2]. (2022-05-16) Add x1 sr model. Add --tile_size to avoid OOM. (2022-03-15) Add x4 sr model. Try --sr_scale. (2022-03-09) Add GPEN-BFR-2048 for selfies. I have to take it down due to commercial issues. Sorry about that. (2021-12-29) Add online demos  Hugging Face Spaces. Many thanks to CJWBW and AK391. (2021-12-16) Release a simplified training code of GPEN. It differs from our implementation in the paper, but could achieve comparable performance. We strongly recommend to change the degradation model. (2021-12-09) Add face parsing to better paste restored faces back. (2021-12-09) GPEN can run on CPU now by simply discarding --use_cuda. (2021-12-01) GPEN can now work on a Windows machine without compiling cuda codes. Please check it out. Thanks to Animadversio. Alternatively, you can try GPEN-Windows. Many thanks to Cioscos. (2021-10-22) GPEN can now work with SR methods. A SR model trained by myself is provided. Replace it with your own model if necessary. (2021-10-11) The Colab demo for GPEN is available now google colab logo. 8.4 下载模型 Download models from Modelscope Install modelscope: https://www.modelscope.cn/models/damo/cv_gpen_image-portrait-enhancement-hires/summary https://www.modelscope.cn/models/damo/cv_gpen_image-portrait-enhancement/summary https://www.modelscope.cn/models/damo/cv_gpen_image-portrait-enhancement-hires/summary pip install modelscope[cv] -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html Run the following codes: import cv2 from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks from modelscope.outputs import OutputKeys portrait_enhancement pipeline(Tasks.image_portrait_enhancement, modeldamo/cv_gpen_image-portrait-enhancement-hires) result portrait_enhancement(https://modelscope.oss-cn-beijing.aliyuncs.com/test/images/marilyn_monroe_4.jpg) cv2.imwrite(result.png, result[OutputKeys.OUTPUT_IMG]) It will automatically download the GPEN models. You can find the model in the local path ~/.cache/modelscope/hub/damo. Please note pytorch_model.pt, pytorch_model-2048.pt are respectively the 1024 and 2048 versions. 8.5 依赖项Usage python: https://img.shields.io/badge/python-v3.7.4-green.svg?styleplastic pytorch: https://img.shields.io/badge/pytorch-v1.7.0-green.svg?styleplastic cuda: https://img.shields.io/badge/cuda-v10.2.89-green.svg?styleplastic driver: https://img.shields.io/badge/driver-v460.73.01-green.svg?styleplastic gcc: https://img.shields.io/badge/gcc-v7.5.0-green.svg?styleplastic 8.5.1 Clone this repository: git clone https://github.com/yangxy/GPEN.git cd GPEN 8.5.2 Download RetinaFace model and our pre-trained model (not our best model due to commercial issues) and put them into weights/. RetinaFace-R50 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/RetinaFace-R50.pth ParseNet-latest https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/ParseNet-latest.pth model_ir_se50 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/model_ir_se50.pth GPEN-BFR-512 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-BFR-512.pth GPEN-BFR-512-D https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-BFR-512-D.pth GPEN-BFR-256 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-BFR-256.pth GPEN-BFR-256-D https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-BFR-256-D.pth GPEN-Colorization-1024 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-Colorization-1024.pth GPEN-Inpainting-1024 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-Inpainting-1024.pth GPEN-Seg2face-512 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-Seg2face-512.pth realesrnet_x1 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/realesrnet_x1.pth realesrnet_x2 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/realesrnet_x2.pth realesrnet_x4 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/realesrnet_x4.pth 8.5.3 Restore face images: python demo.py --task FaceEnhancement --model GPEN-BFR-512 --in_size 512 --channel_multiplier 2 --narrow 1 --use_sr --sr_scale 4 --use_cuda --save_face --indir examples/imgs --outdir examples/outs-bfr Colorize faces: python demo.py --task FaceColorization --model GPEN-Colorization-1024 --in_size 1024 --use_cuda --indir examples/grays --outdir examples/outs-colorization Complete faces: python demo.py --task FaceInpainting --model GPEN-Inpainting-1024 --in_size 1024 --use_cuda --indir examples/ffhq-10 --outdir examples/outs-inpainting Synthesize faces: python demo.py --task Segmentation2Face --model GPEN-Seg2face-512 --in_size 512 --use_cuda --indir examples/segs --outdir examples/outs-seg2face Train GPEN for BFR with 4 GPUs: CUDA_VISIBLE_DEVICES0,1,2,3 python -m torch.distributed.launch --nproc_per_node4 --master_port4321 train_simple.py --size 1024 --channel_multiplier 2 --narrow 1 --ckpt weights --sample results --batch 2 --path your_path_of_cropedaligned_hq_faces (e.g., FFHQ) When testing your own model, set --key g_ema. Please check out run.sh for more details. 8.6 Main idea 8.7 Citation If our work is useful for your research, please consider citing: inproceedings{Yang2021GPEN,     title{GAN Prior Embedded Network for Blind Face Restoration in the Wild},     author{Tao Yang, Peiran Ren, Xuansong Xie, and Lei Zhang},     booktitle{IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},     year{2021} } 8.8 License © Alibaba, 2021. For academic and non-commercial use only. 8.9 Acknowledgments We borrow some codes from Pytorch_Retinaface, stylegan2-pytorch, Real-ESRGAN, and GFPGAN. 8.10 Contact If you have any questions or suggestions about this paper, feel free to reach me at yangtao9009gmail.com.
http://www.w-s-a.com/news/518090/

相关文章:

  • 网站及单位网站建设情况眉县住房和城市建设局网站
  • 网站是否能够被恶意镜像wordpress占用
  • 经典设计网站网站等保测评怎么做
  • 重庆做网站公司贴吧廊坊公司快速建站
  • 海外贸易在什么网站做怎么排名到百度第一页
  • 线上注册公司是在哪个网站做高仿网站
  • 网站构架图网上推广平台哪个好
  • 公司网站首页图片素材vi设计的目的和意义
  • 网站的需求分析都有哪些内容济南营销型网站建设团队
  • 怎么选择优秀的网站建设公司生鲜网站开发
  • 如何编写网站建设销售的心得网站的权限管理怎么做
  • 网站业务员好做吗无忧网站优化
  • 网站随机代码网站建设费 账务处理
  • 商洛网站建设哪家好网站建设 织梦者
  • 怎么创建收费网站宁夏住房和城乡建设部网站
  • 怎么确认网站是什么语言做的用php和mysql做网站
  • 安徽做网站的公司有哪些星子网络公司
  • 肥西县重点工程建设管理局网站wordpress界面菜单怎么弄
  • 宁夏网站开发设计说明书wordpress主题背景图片
  • 同一个阿里云可以做两个网站吗织梦 帝国 学校网站
  • 城阳网站建设培训网站后台怎么上传文件
  • 重庆茂尔建设集团有限公司网站网页制作教程软件
  • 金湖建设工程质量监督网站高端网站建设公司哪里济南兴田德润实惠吗
  • 站酷设计网站官网入口文字设计seo网站推广工具
  • 专业移动网站建设网站建设软件dw
  • 摄影网站设计思想视觉传达毕业设计作品网站
  • 需要优化的网站有哪些设计装修app
  • 数据型网站建设东莞好的网站国外站建设价格
  • 网络营销方法有哪些举例seo应用领域有哪些
  • 建设银行官方网站官网做网站的专业叫什么