激励案例网站制作,泉州做网站开发公司,遵义软件制作平台,邯郸免费网络一.C/C内存分布
先来回顾一下C语言内存分区示意图如下#xff1a; 代码区#xff1a;
程序执行代码一般存放在代码区#xff0c;字符串常量以及define定义的常量也可能存放在代码区。
常量区#xff1a; 字符串#xff0c;数字等常量以及const修饰的全局变量往往存放在…一.C/C内存分布
先来回顾一下C语言内存分区示意图如下 代码区
程序执行代码一般存放在代码区字符串常量以及define定义的常量也可能存放在代码区。
常量区 字符串数字等常量以及const修饰的全局变量往往存放在常量区。
全局(静态)区
将全局变量和静态变量存放在全局(静态)区已初始化的全局变量和静态变量存放在一块区域 未初始化的全局变量和未初始化的静态变量存放在相邻的另一块区域。
堆区 堆区由程序员调用malloc, calloc, realloc等分配函数进行内存空间的分配和释放按内存地址由低地址到高地址增长。
栈区 栈区由编译器自动分配释放由操作系统自动管理无须手动管理在函数执行时函数内局部变量的存储单元都可以在栈上创建函数执行结束时这些存储单元自动被释放。
我们再来看下面的一段代码和相关问题 int globalVar 1;//数据段/静态区
static int staticGlobalVar 1;//数据段/静态区
void Test()
{static int staticVar 1;//数据段/静态区int localVar 1;//栈区int num1[10] { 1, 2, 3, 4 };//栈区char char2[] abcd;//char2存放在栈区*char2代表字符串第一个元素存放在栈区const char* pChar3 abcd;//pChar3存放在栈区*pChar3存放在常量区int* ptr1 (int*)malloc(sizeof(int) * 4);//ptr1是个指针存放在栈区*ptr1指向的内容存放在堆区int* ptr2 (int*)calloc(4, sizeof(int));int* ptr3 (int*)realloc(ptr2, sizeof(int) * 4);free(ptr1);free(ptr3);
} 小结 说明
栈又叫堆栈--非静态局部变量/函数参数/返回值等等栈是向下增长的内存映射段是高效的I/O映射方式用于装载一个共享的动态内存库。用户可使用系统接口创建共享共享内存做进程间通信堆用于程序运行时动态内存分配堆是可以上增长的数据段--存储全局数据和静态数据代码段--可执行的代码/只读常量。
二.C内存管理方式
C语言内存管理方式在C中可以继续使用但有些地方就无能为力而且使用起来比较麻烦因此C又提出了自己的内存管理方式通过new和delete操作符进行动态内存管理。
2.1.new/delete操作内置类型
new运算符
new运算符用来申请一块连续的内存其格式如下
new 数据类型 (初始化列表);
malloc()函数申请内存时返回的是一个void*类型的指针而new与malloc()不同它分配一块存储空间并且指定了类型信息并根据初始化列表中给出的值进行初始化是直接可以使用的内存这个过程称之为new一个对象。 而且new动态创建对象时不必为该对象命名直接指定数据类型即可。如果申请内存成功返回一个类型指针如果申请内存失败则返回NULL。
用new可以创建基本数据类型对象也可以创建数组对象其格式如下
new 数据类型 [数组长度];
使用new创建数组时后面可以加小括号()但括号中不可以指定任何初始值加小括号时由编译器为其提供默认初始值而不加小括号时不提供任何初始值。例如
int* pinew int[10]();//pi所指向的数组中10个元素初始化为0
char* pcnew char[10];//pc所指向的数组中没有提供初始值
C虽然不允许定义长度为0的数组变量但明确指出调用new创建长度为0的数组是合法的它返回有效的非零指针但该指针不能进行有效的解引用操作因为它没有指向任何元素它主要的作用是用于比较运算。例如
double *pdnew double[0];
delete运算符
用new运算符分配内存使用后要及时释放以免造成内存泄漏C提供了delete运算符来释放new出来的内存空间其格式如下
delete 指针名;
直接作用于指针就可以删除由new创建的对象释放指针所指向的内存空间。但在释放数组对象时要在指针名前加上[ ]其格式如下
delete [] 指针名;
如果缺失[ ]编译器在编译时不会报错但delete只能释放部分空间因此在程序运行时会出现内存泄漏等问题。
int main()
{int* p1 new int;//不会初始化动态申请一个int类型的空间int* p3 new int(10);//会初始化申请一个int类型的空间初始化为10int* p4 new int[10];//申请10个int的数组不会初始化int* p5 new int[10]{ 1,2,3,4 };//会初始化delete p1;delete p3;delete [] p4;delete [] p5;//C语言版//int* p2 (int*)malloc(sizeof(int));//if (p2 nullptr)//{// perror(malloc fail);//}return 0;
}
调试分析 注意
申请和释放单个元素的空间使用new和delete操作符申请和释放连续的空间使用new[]和delete[]要匹配起来使用。
2.2.new/delete操作自定义类型
new/delete除了可以操作内置类型也可以操作自定义类型。
class A
{
public:A(int a 0): _a(a){cout A(): this endl;}//注意不加缺省值会报错提示没有合适的默认构造函数可用/*A(int a): _a(a){cout A(): this endl;}*/~A(){cout ~A(): this endl;}private:int _a;
};
//
//匹配使用不要交叉否则结果是不确定的malloc出来的就要用free释放new出来的就要用delete释放不要混淆了
int main()
{//new/delete 和 malloc/free 最大区别是 new/delete对于【自定义类型】除了开辟空间还会调用构造函数和析构函数A* p1 (A*)malloc(sizeof(A));A* p2 new A(1);//调用构造函数free(p1);delete p2;//调用析构函数// 内置类型几乎是一样的int* p3 (int*)malloc(sizeof(int)); // Cint* p4 new int;free(p3);delete p4;A* p5 (A*)malloc(sizeof(A) * 10);A* p6 new A[10];//调用10次构造函数free(p5);delete[] p6;//调用10次析构函数return 0;
}
运行结果 注意
要匹配使用不要交叉否则结果是不确定的malloc出来的就要用free释放new出来的就要用delete释放不要混淆。
三.operator new与operator delete函数
new和delete是用户进行动态内存申请和释放的操作符operator new和operator delete是系统提供的全局函数new在底层调用operator new全局函数来申请空间delete在底层通过operator delete全局函数来释放空间。如下所示
//operator new该函数实际通过malloc来申请空间当malloc申请空间成功时直接返回申请空间失败尝试执行空间不足应对措施如果该应对措施用户设置了则继续申请否则抛异常。
void* __CRTDECL operator new(size_t size) _THROW1(_STD bad_alloc)
{// try to allocate size bytesvoid* p;while ((p malloc(size)) 0){if (_callnewh(size) 0){// report no memory// 如果申请内存失败了这里会抛出bad_alloc 类型异常static const std::bad_alloc nomem;_RAISE(nomem);}}return (p);
}//operator delete: 该函数最终是通过free来释放空间的
void operator delete(void* pUserData)
{_CrtMemBlockHeader* pHead;RTCCALLBACK(_RTC_Free_hook, (pUserData, 0));if (pUserData NULL)return;_mlock(_HEAP_LOCK); /* block other threads */__TRY/* get a pointer to memory block header */pHead pHdr(pUserData);/* verify block type */_ASSERTE(_BLOCK_TYPE_IS_VALID(pHead-nBlockUse));_free_dbg(pUserData, pHead-nBlockUse);__FINALLY_munlock(_HEAP_LOCK); /* release other threads */__END_TRY_FINALLYreturn;
}
案例
class A
{
public:A(int a 0): _a(a){cout A(): this endl;}//注意不加缺省值会报错提示没有合适的默认构造函数可用/*A(int a): _a(a){cout A(): this endl;}*/~A(){cout ~A(): this endl;}private:int _a;
};int main()
{A* a new A(1);delete a;return 0;
}
反汇编分析 小结
通过上述两个全局函数的实现知道operator new实际也是通过malloc来申请空间如果malloc申请空间成功就直接返回否则执行用户提供的空间不足应对措施如果用户提供该措施就继续申请否则就抛异常。operator delete最终是通过free来释放空间的。
提问
既然operator new和operator delete这两个全局函数是用malloc和free实现的那我们是否可以用operator new和operator delete来实现malloc和free的功能
答案可以。
class A
{
public:A(int a 0): _a(a){cout A(): this endl;}//注意不加缺省值会报错提示没有合适的默认构造函数可用/*A(int a): _a(a){cout A(): this endl;}*/~A(){cout ~A(): this endl;}private:int _a;
};int main()
{//内置类型int* p1 (int*)operator new(sizeof(int));int* p2 new int;operator delete(p1);delete p2;//自定义类型A* p3 (A*)operator new(sizeof(A));//不会调用构造函数A* p4 new A(1);operator delete(p3);//不会调用析构函数delete p4;return 0;
}
四.new和delete的实现原理
内置类型
如果申请的是内置类型的空间new和mallocdelete和free基本类似。不同的地方是new/delete申请和释放的是单个元素的空间new[ ]和delete[ ]申请的是连续空间而且new在申请空间失败时会抛异常malloc会返回NULL。
int main()
{//内置类型//失败了抛出异常//int* p1 (int*)operator new(sizeof(int));int* p1 new int;//失败了返回空int* p2 (int*)malloc(sizeof(int*));if (p2 nullptr){perror(malloc fail);}return 0;
}
自定义类型
new的原理
调用operator new函数申请空间在申请的空间上执行构造函数完成对象的构造。
delete的原理
在空间上执行析构函数完成对象中资源的清理工作调用operator delete函数释放对象的空间。
new T[N]的原理
调用operator new[]函数在operator new[]中实际调用operator new函数完成N个对象空间的申请在申请的空间上执行N次构造函数。
delete[]的原理
在释放的对象空间上执行N次析构函数完成N个对象中资源的清理调用operator delete[]释放空间实际在operator delete[]中调用operator delete来释放空间。
案例一 自定义类型
class A
{
public:A(int a 0): _a(a){cout A(): this endl;}~A(){cout ~A(): this endl;}private:int _a;
};int main()
{//自定义类型//申请空间operator new - 封装malloc//调用构造函数A* p5 new A;//先调用析构函数//再operator delete p5指向的空间delete p5;//申请空间operator new[] - operator new - 封装malloc//调用10次构造函数A* p6 new A[10];//先调用10次析构函数//再operator delete[] p6指向的空间delete[] p6;A* p9 new A[10];//free(p9);//delete p9;//把自定义的析构函数屏蔽掉则不会调用析构函数可以运行通过此时的编译器也不会去多开辟4个字节的空间来存放元素个数10delete[] p9;//vs编译器会多开4个字节的空间存放个数10return 0;
}
解析 案例二自定义类型不匹配问题
class A
{
public:A(int a 0): _a(a){cout A(): this endl;}~A(){cout ~A(): this endl;}private:int _a;
};class Stack
{
public:Stack(){cout Stack() endl;_a new int[4];_top 0;_capacity 4;}~Stack(){delete[] _a;_top _capacity 0;}private:int* _a;int _top;int _capacity;
};int main()
{//内置类型不匹配通常不会报错int* p7 new int[10];free(p7);//自定义类型不匹配A* p8 new A;//free(p8);//少调用析构函数但由于不涉及内存申请通常不会报错delete p8;Stack st;//st存放在栈上为12字节其中存放了_a等通过调用构造函数为_a开辟了16字节的内存空间并指向了这块空间Stack* pst new Stack;//pst存放在栈上为指针占4个字节new时会去堆上开辟12个字节的空间存放_a等通过调用构造函数为_a开辟了16字节的内存空间并指向了这块空间//free(pst);//少调用析构函数但由于涉及内存申请导致内存泄漏但不会报错delete pst;//先调用析构函数释放_a所指向的内存空间16字节再调用operator delete(pst)释放new时在堆上开辟12个字节的空间//结论//由于 new/delete 底层实现机制有关联交叉。不匹配使用时可能有问题可能没问题建议大家一定匹配使用return 0;
}
解析 五.定位new表达式(placement-new)
定位new表达式是在已分配的原始内存空间中调用构造函数初始化一个对象。
使用格式
new (place_address) type或者new (place_address) type(initializer-list)
注意place_address必须是一个指针initializer-list是类型的初始化列表。
使用场景
定位new表达式在实际中一般是配合内存池使用。因为内存池分配出的内存没有初始化所以如果是自定义类型的对象需要使用new的定义表达式进行显示调构造函数进行初始化。
class A
{
public:A(int a 0): _a(a){cout A(): this endl;}~A(){cout ~A(): this endl;}private:int _a;
};int main()
{A aa;//p1现在指向的只不过是与A对象相同大小的一段空间还不能算是一个对象因为构造函数没有执行A* p1 (A*)malloc(sizeof(A));if (p1 nullptr){perror(malloc fail);}//对一块已有空间初始化--定位new//new(p1)A;//注意如果A类的构造函数有参数时此处需要传参new(p1)A(1);p1-~A();free(p1);A* p2 (A*)operator new(sizeof(A));new(p2)A(10);p2-~A();operator delete(p2);return 0;
}
六.malloc/free和new/delete的区别
malloc/free和new/delete的共同点是它们都是从堆上申请空间并且需要用户手动释放。不同的地方是
malloc和free是函数new和delete是操作符malloc申请的空间不会初始化new可以初始化malloc申请空间时需要手动计算空间大小并传递new只需在其后跟上空间的类型即可如果是多个对象[ ]中指定对象个数即可malloc的返回值为void*在使用时必须强转new不需要因为new后跟的是空间的类型malloc申请空间失败时返回的是NULL因此使用时必须判空new不需要但是new需要捕获异常申请自定义类型对象时malloc/free只会开辟空间不会调用构造函数与析构函数而new在申请空间后会调用构造函数完成对象的初始化delete在释放空间前会调用析构函数完成空间中资源的清理。
七.内存泄漏
什么是内存泄漏内存泄漏有什么危害
什么是内存泄漏内存泄漏指因为疏忽或错误造成程序未能释放已经不再使用的内存的情况。内存泄漏并不是指内存在物理上的消失而是应用程序分配某段内存后因为设计错误失去了对该段内存的控制因而造成了内存的浪费。 内存泄漏的危害长期运行的程序出现内存泄漏影响很大如操作系统、后台服务等等出现内存泄漏会导致响应越来越慢最终卡死。