金安合肥网站建设专业,工作总结范文简短,总行网站建设银行报,wordpress微信防红插件下载Python - Opencv应用实例之CT图像检测边缘和内部缺陷 将传统图像处理处理算法应用于CT图像的边缘检测和缺陷检测,想要实现效果如下: 关于图像处理算法,主要涉及的有:灰度、阈值化、边缘或角点等特征提取、灰度相似度变换,主要偏向于一些2D的几何变换、涉及图像矩阵的一些统…Python - Opencv应用实例之CT图像检测边缘和内部缺陷
将传统图像处理处理算法应用于CT图像的边缘检测和缺陷检测,想要实现效果如下: 关于图像处理算法,主要涉及的有:灰度、阈值化、边缘或角点等特征提取、灰度相似度变换,主要偏向于一些2D的几何变换、涉及图像矩阵的一些统计算法、空间曲线拟合、一维及二维卷积相关的内容,而把他们应用到实际工程中落地解决问题,则有需要另一番思路在里边了,由实际图像的角度进行分析,处理算法先后顺序的不同将直接导致最终效果的差距,另外就是一个不可避免的优化问题:调参 - - 如果场景比较复杂导致采集的图像情况多样性,调参不可避免!本文应用实例实现对CT图像的边缘和内部缺陷进行检测,主要涉及算法及流程如下:灰度-二值化-形态学-感兴趣区域定位-自适应阈值化-剔除异常边缘-绘制结果,实现的效果如下: 下边讲述以下算法整体流程:1.Opencv API简介
如果想要具体了解函数使用,直接搜索函数名字即可,在此比较给出算法的效果差别。