当前位置: 首页 > news >正文

厦门市城乡建设局网站深圳影视传媒公司有哪些

厦门市城乡建设局网站,深圳影视传媒公司有哪些,公司做网站有什么好处,网站开发视频教程百度云目录 一、概述 常见概念 二、架构演进 1.单机架构 2.应用数据分离架构 3.应用服务集群架构 4.读写分离 / 主从分离架构 5.引入缓存 —— 冷热分离架构 6.垂直分库 7.业务拆分 —— 微服务 8.容器化引入——容器编排架构 三、尾声 一、概述 在进行技术学习过程中由于大部分读者没有经历过一些中大型系统的实际经验导致无法从全局理解一些概念所以本文以一个 电子商务 应用为例介绍从一百个到千万级并发情况下服务端的架构的演进过程同时列举出每个演进阶段会遇到的相关技术让大家对架构的演进有一个整体的认知方便大家对后续知识做深入学习时有一定的整体视野。 常见概念 在正式引入架构演进之前为避免读者对架构中的概念完全不了解导致低效沟通优先对其中一些比较重要的概念做前置介绍 应用Application/ 系统System 为了完成一整套服务的一个程序或者一组相互配合的程序群。生活例子类比为了完成一项任务而搭建的由一个人或者一群相互配的人组成的团队。 模块Module/ 组件Component 当应用较复杂时为了分离职责将其中具有清晰职责的、内聚性强的部分抽象出概念便于理解。生活例子类比军队中为了进行某据点的攻克将人员分为突击小组、爆破小组、掩护小组、通信小组等。 分布式Distributed 系统中的多个模块被部署于不同服务器之上即可以将该系统称为分布式系统。如 Web 服务器与数据库分别工作在不同的服务器上或者多台 Web 服务器被分别部署在不同服务器上。生活例子类比为了更好的满足现实需要一个在同一个办公场地的工作小组被分散到多个城市的不同工作场地中进行远程配合工作完成目标。跨主机之间的模块之间的通信基本要借助网络支撑完成 集群Cluster 被部署于多台服务器上的、为了实现特定目标的一个/组特定的组件整个整体被称为集群。比如多个 MySQL 工作在不同服务器上共同提供数据库服务目标可以被称为一组数据库集群。生活例子类比为了解决军队攻克防守坚固的大城市的作战目标指挥部将大批炮兵部队集中起来形成一个炮兵打击集群。 分布式 vs 集群。通常不用太严格区分两者的细微概念细究的话分布式强调的是物理形态即工作在不同服务器上并且通过网络通信配合完成任务而集群更在意逻辑形态即是否为了完成特定服务目标。 主Master/ 从Slave 集群中通常有一个程序需要承担更多的职责被称为主其他承担附属职责的被称为从。比如 MySQL 集群中只有其中一台服务器上数据库允许进行数据的写入增/删/改其他数据库的数据修改全部要从这台数据库同步而来则把那台数据库称为主库其他数据库称为从库。 中间件Middleware 一类提供不同应用程序用于相互通信的软件即处于不同技术、工具和数据库之间的桥梁。生活例子类比一家饭店开始时会每天去市场挑选买菜但随着饭店业务量变大成立一个采购部由采购部专职于采买业务称为厨房和菜市场之间的桥梁。 容器Docker Docker 是一个开源的应用容器引擎让开发者可以打包他们的应用以及依赖包到一个可移植的镜像中然后发布到任何流行的 Linux 或 Windows 操作系统的机器上也可以实现虚拟化。可以理解为一个集装箱集装箱里面是每个用户的货物整体打包。 容器编排K8S kubernetes简称 K8s是用 8 代替名字中间的 8 个字符“ubernete”而成的缩写。是一个开源的用于管理云平台中多个主机上的容器化的应用Kubernetes 的目标是让部署容器化的应用简单并且高效。可以理解为一个货船安装集装箱的大小货物情况合理的来组织集装箱完成整体货物的搬运。 评价指标Metric 在 Docker 环境中评价指标Metric用于衡量 Docker 容器、镜像以及整个 Docker 系统的性能、资源使用情况、健康状态等有助于用户监控、优化和管理 Docker 相关的工作负载 可用性Availability 考察单位时间段内系统可以正常提供服务的概率/期望。例如 年化系统可用性 系统正常提供服务时长 / 一年总时长。这里暗含着一个指标即如何评价系统提供无法是否正常我们就不深入了。平时我们常说的 4 个 9 即系统可以提供 99.99% 的可用性5 个 9 是 99.999% 的可用性以此类推。我们平时只是用高可用HighAvailability HA这个非量化目标简要表达我们系统的追求。 响应时长Response Time RT 指用户完成输入到系统给出用户反应的时长。例如点外卖业务的响应时长 拿到外卖的时刻 - 完成点单的时刻。通常我们需要衡量的是最长响应时长、平均响应时长和中位数响应时长。这个指标原则上是越小越好但很多情况下由于实现的限制需要根据实际情况具体判断 吞吐Throughputvs 并发Concurrent 吞吐考察单位时间段内系统可以成功处理的请求的数量。并发指系统同一时刻支持的请求最高量。例如一条 2 车道高速公路一分钟可以通过 20 辆车则并发是 2一分钟的吞吐量是 20。实践中并发量往往无法直接获取很多时候都是用极短的时间段比如 1 秒的吞吐量做代替。我们平时用高并发Hight Concurrnet这个非量化目标简要表达系统的追求。 二、架构演进 1.单机架构 初期我们需要利用我们精干的技术团队快速将业务系统投入市场进行检验并且可以迅速响应变化要求。但好在前期用户访问量很少没有对我们的性能、安全等提出很高的要求而且系统架构简单无需专业的运维团队所以选择单机架构是合适的。 用户在浏览器中输入 www.taobao.com首先经过 DNS 服务将域名解析成 IP 地址10.102.41.1随后浏览器访问该 IP 对应的应用服务。 相关软件 Web 服务器软件Tomcat、Netty、Nginx、Apache 等 数据库软件MySQL、Oracle、PostgreSQL、SQL Server 等 同学们目前的训练大多针对该阶段的业务系统包括本科毕业设计的系统实现。 2.应用数据分离架构 随着系统的上线我们不出意外地获得了成功。市场上出现了一批忠实于我们的用户使得系统的访问量逐步上升逐渐逼近了硬件资源的极限同时团队也在此期间积累了对业务流程的一批经验。面对当前的性能压力我们需要未雨绸缪去进行系统重构、架构挑战以提升系统的承载能力。但由于预算仍然很紧张我们选择了将应用和数据分离的做法可以最小代价的提升系统的承载能力。 和之前架构的主要区别在于将数据库服务独立部署在同一个数据中心的其他服务器上应用服务通过网络访问数据。 3.应用服务集群架构 我们的系统受到了用户的欢迎并且出现了爆款单台应用服务器已经无法满足需求了。我们的单机应用服务器首先遇到了瓶颈摆在我们技术团队面前的有两种方案大家针对方案的优劣展示了热烈的讨论 • 垂直扩展 / 纵向扩展 Scale Up。通过购买性能更优、价格更高的应用服务器来应对更多的流量。这种方案的优势在于完全不需要对系统软件做任何的调整但劣势也很明显硬件性能和价格的增长关系是非线性的意味着选择性能 2 倍的硬件可能需要花费超过 4 倍的价格其次硬件性能提升是有明显上限的。 • 水平扩展 / 横向扩展 Scale Out。通过调整软件架构增加应用层硬件将用户流量分担到不同的应用层服务器上来提升系统的承载能力。这种方案的优势在于成本相对较低并且提升的上限空间也很大。但劣势是带给系统更多的复杂性需要技术团队有更丰富的经验。 经过团队的学习、调研和讨论最终选择了水平扩展的方案来解决该问题但这需要引入一个新的组件 —— 负载均衡为了解决用户流量向哪台应用服务器分发的问题需要一个专门的系统组件做流量分发。实际中负载均衡不仅仅指的是工作在应用层的甚至可能是其他的网络层之中。同时流量调度算法也有很多种这里简单介绍几种较为常见的 • Round-Robin 轮询算法。即非常公平地将请求依次分给不同的应用服务器。 • Weight-Round-Robin 轮询算法。为不同的服务器比如性能不同赋予不同的权重weight能者多劳。 • 一致哈希散列算法。通过计算用户的特征值比如 IP 地址得到哈希值根据哈希结果做分发优点是确保来自相同用户的请求总是被分给指定的服务器。也就是我们平时遇到的专项客户经理服务。 相关软件 负载均衡软件Nginx、HAProxy、LVS、F5 等 4.读写分离 / 主从分离架构 上一节提到我们把用户的请求通过负载均衡分发到不同的应用服务器之后可以并行处理了并且可以随着业务的增长可以动态扩张服务器的数量来缓解压力。但是现在的架构里无论扩展多少台服务器这些请求最终都会从数据库读写数据到一定程度之后数据的压力称为系统承载能力的瓶颈点。我们可以像扩展应用服务器一样扩展数据库服务器么答案是否定的因为数据库服务有其特殊性如果将数据分散到各台服务器之后数据的一致性将无法得到保障。所谓数据的一致性此处是指针对同一个系统无论何时何地我们都应该看到一个始终维持统一的数据。想象一下银行管理的账户金额如果收到一笔转账之后一份数据库的数据修改了但另外的数据库没有修改则用户得到的存款金额将是错误的。 我们采用的解决办法是这样的保留一个主要的数据库作为写入数据库其他的数据库作为从属数据库。从库的所有数据全部来自主库的数据经过同步后从库可以维护着与主库一致的数据。然后为了分担数据库的压力我们可以将写数据请求全部交给主库处理但读请求分散到各个从库中。由于大部分的系统中读写请求都是不成比例的例如 100 次读 1 次写所以只要将读请求由各个从库分担之后数据库的压力就没有那么大了。当然这个过程不是无代价的主库到从库的数据同步其实是由时间成本的但这个问题我们暂时不做进一步探讨。 应用中需要对读写请求做分离处理所以可以利用一些数据库中间件将请求分离的职责托管出去。 相关软件 MyCat、TDDL、Amoeba、Cobar 等类似数据库中间件等 5.引入缓存 —— 冷热分离架构 随着访问量继续增加发现业务中一些数据的读取频率远大于其他数据的读取频率。我们把这部分数据称为热点数据与之相对应的是冷数据。针对热数据为了提升其读取的响应时间可以增加本地缓存并在外部增加分布式缓存缓存热门商品信息或热门商品的 html 页面等。通过缓存能把绝大多数请求在读写数据库前拦截掉大大降低数据库压力。其中涉及的技术包括使用 memcached 作为本地缓存使用Redis 作为分布式缓存还会涉及缓存一致性、缓存穿透/击穿、缓存雪崩、热点数据集中失效等问题。 相关软件Memcached、Redis 等缓存软件 6.垂直分库 随着业务的数据量增大大量的数据存储在同一个库中已经显得有些力不从心了所以可以按照业务将数据分别存储。比如针对评论数据可按照商品 ID 进行 hash路由到对应的表中存储针对支付记录可按照小时创建表每个小时表继续拆分为小表使用用户 ID 或记录编号来路由数据。只要实时操作的表数据量足够小请求能够足够均匀的分发到多台服务器上的小表那数据库就能通过水平扩展的方式来提高性能。其中前面提到的 Mycat 也支持在大表拆分为小表情况下的访问控制。这种做法显著的增加了数据库运维的难度对 DBA 的要求较高。数据库设计到这种结构时已经可以称为分布式数据库但是这只是一个逻辑的数据库整体数据库里不同的组成部分是由不同的组件单独来实现的如分库分表的管理和请求分发由 Mycat 实现SQL 的解析由单机的数据库实现读写分离可能由网关和消息队列来实现查询结果的汇总可能由数据库接口层来实现等等这种架构其实是 MPP大规模并行处理架构的一类实现。 相关软件Greenplum、TiDB、Postgresql XC、HAWQ 等商用的如南大通用的 GBase、睿帆科技的雪球 DB、华为的 LibrA 等 7.业务拆分 —— 微服务 随着人员增加业务发展我们将业务分给不同的开发团队去维护每个团队独立实现自己的微服务然后互相之间对数据的直接访问进行隔离可以利用 Gateway、消息总线等技术实现相互之间的调用关联。甚至可以把一些类似用户管理等业务提成公共服务。 相关软件Spring Cloud、Dubbo 8.容器化引入——容器编排架构 随着业务增长然后发现系统的资源利用率不高很多资源用来应对短时高并发平时又闲置需要动态扩缩容还没有办法直接下线服务器而且开发、测试、生产每套环境都要隔离的环境运维的工作量变的非常大。容器化技术的出现给这些问题的解决带来了新的思路。 目前最流行的容器化技术是 Docker最流行的容器管理服务是 Kubernetes(K8S)应用/服务可以打包为 Docker 镜像通过 K8S 来动态分发和部署镜像。Docker 镜像可理解为一个能运行你的应用/服务的最小的操作系统里面放着应用/服务的运行代码运行环境根据实际的需要设置好。把整个“操作系统”打包为一个镜像后就可以分发到需要部署相关服务的机器上直接启动 Docker 镜像就可以把服务起起来使服务的部署和运维变得简单。服务 通常会有生产和研发 k8s 集群一般不会公用而研发集群通过命名空间来完成应用隔离有的公司按照研发目的划分为研发和测试集群有的公司通过组织架构完成部门间的资源复用。 相关软件Docker、K8S 三、尾声 至此一个还算合理的高可用、高并发系统的基本雏形已显。注意以上所说的架构演变顺序只是针对某个侧面进行单独的改进在实际场景中可能同一时间会有几个问题需要解决或者可能先达到瓶颈的是另外的方面这时候就应该按照实际问题实际解决。如在政府类的并发量可能不大但业务可能很丰富的场景高并发就不是重点解决的问题此时优先需要的可能会是丰富需求的解决方案。 对于单次实施并且性能指标明确的系统架构设计到能够支持系统的性能指标要求就足够了但要留有扩展架构的接口以便不备之需。对于不断发展的系统如电商平台应设计到能满足下一阶段用户量和性能指标要求的程度并根据业务的增长不断的迭代升级架构以支持更高的并发和更丰富的业务。所谓的“大数据”其实是海量数据采集清洗转换、数据存储、数据分析、数据服务等场景解决方案的一个统称在每一个场景都包含了多种可选的技术如数据采集有Flume、Sqoop、Kettle 等数据存储有分布式文件系统 HDFS、FastDFSNoSQL数据库 HBase、MongoDB 等数据分析有 Spark 技术栈、机器学习算法等。总的来说大数据架构就是根据业务的需求整合各种大数据组件组合而成的架构一般会提供分布式存储、分布式计算、多维分析、数据仓库、机器学习算法等能力。而服务端架构更多指的是应用组织层面的架构底层能力往往是由大数据架构来提供。
http://www.w-s-a.com/news/724248/

相关文章:

  • 网站开发知识网上怎么申请个人营业执照
  • 音乐网站建设费用营销策略都有哪些4p
  • 深圳制作网站怎么样wordpress 学习视频
  • 新公司注册网站传奇手游大型网站
  • 无极网站网站涉案多少人被抓网站的按钮怎么做
  • ds216j做网站做购物网站那个好
  • 做淘宝门头的网站阿里巴巴官网app
  • 安踏网站建设策划方案如何通过域名访问网站
  • 建设网站破解版seo查询 站长之家
  • 太原模板建站平台旅游企业网站建设工作的通知
  • 网站国外建设超级简历模板官网
  • 上海网站建设市场医药网站怎么做
  • 宁夏成城建设集团网站网店美工课本
  • 哪些网站的简历做的比较好政务服务 网站 建设方案
  • 如何建设个人网站凡科怎么样vps安装wordpress后怎样登录
  • 学seo朝阳区seo
  • 网站开发团队成员皮具网站建设
  • 国外外贸需求网站响应式布局网页
  • 手机端便民服务平台网站建设昆明网络哪家好
  • 产品网站建设找哪家舟山信息港
  • 唐山网站建设汉狮怎么样seol英文啥意思
  • 深圳小程序网站开发公司网页制作模板视频教程
  • 电子商务网站开发开题报告wordpress更改后台地址
  • 网站静态前端是什么工作
  • 餐饮门户网站 方案怎么做创业好项目
  • 做百度手机网站推广普通话的宣传标语
  • 记事本可以做网站吗网站服务器是主机吗
  • 手机网站被拦截怎么办怎么解决东营建设信息网网
  • 外贸网站模板免费微信网站开发技术
  • 视频盗版网站怎么做福州网站seo