外贸网站推广服务,外贸上哪个网站开发客户,wordpress 问答主题,全屋定制报价明细表目录 第一#xff1a;数组
1、数组的应用
第二#xff1a;链表
1、链表操作
2、链表的应用
第三#xff1a;堆栈
1、堆栈操作
2、堆栈的应用
第四#xff1a;队列
1、队列操作
2、队列的应用
第五#xff1a;哈希表
1、哈希函数
2、哈希表的应用
第六#… 目录 第一数组
1、数组的应用
第二链表
1、链表操作
2、链表的应用
第三堆栈
1、堆栈操作
2、堆栈的应用
第四队列
1、队列操作
2、队列的应用
第五哈希表
1、哈希函数
2、哈希表的应用
第六树
1、二叉搜索树
2、树的应用
第七堆
1、堆的应用
第八图
1、有向图
2、无向图
3、图的应用 数据结构是一种特殊的组织和存储数据的方式可以使我们可以更高效地对存储的数据执行操作。数据结构在计算机科学和软件工程领域具有广泛而多样的用途。 几乎所有已开发的程序或软件系统都使用数据结构。此外数据结构属于计算机科学和软件工程的基础。当涉及软件工程面试问题时这是一个关键主题。因此作为开发人员我们必须对数据结构有充分的了解。
在本文中我将简要解释每个程序员必须知道的8种常用数据结构。
第一数组
数组是固定大小的结构可以容纳相同数据类型的项目。它可以是整数数组浮点数数组字符串数组或什至是数组数组例如二维数组。数组已建立索引这意味着可以进行随机访问。 Fig 1. Visualization of basic Terminology of Arrays
数组运算
· 遍历遍历所有元素并进行打印。
· 插入将一个或多个元素插入数组。
· 删除从数组中删除元素
· 搜索在数组中搜索元素。您可以按元素的值或索引搜索元素
· 更新在给定索引处更新现有元素的值
1、数组的应用
· 用作构建其他数据结构的基础例如数组列表堆哈希表向量和矩阵。
· 用于不同的排序算法例如插入排序快速排序冒泡排序和合并排序。
第二链表 链表是一种顺序结构由相互链接的线性顺序项目序列组成。因此您必须顺序访问数据并且无法进行随机访问。链接列表提供了动态集的简单灵活的表示形式。 让我们考虑以下有关链表的术语。您可以通过参考图2来获得一个清晰的主意。
· 链表中的元素称为节点。
· 每个节点都包含一个密钥和一个指向其后继节点称为next的指针。
· 名为head的属性指向链接列表的第一个元素。
· 链表的最后一个元素称为尾。 Fig 2. Visualization of basic Terminology of Linked Lists
以下是可用的各种类型的链表。
· 单链列表—只能沿正向遍历项目。
· 双链表-可以在前进和后退方向上遍历项目。节点由一个称为上一个的附加指针组成指向上一个节点。
· 循环链接列表—链接列表其中头的上一个指针指向尾部尾号的下一个指针指向头。
1、链表操作
· 搜索通过简单的线性搜索在给定的链表中找到键为k的第一个元素并返回指向该元素的指针
· 插入在链接列表中插入一个密钥。插入可以通过3种不同的方式完成在列表的开头插入在列表的末尾插入然后在列表的中间插入。
· 删除从给定的链表中删除元素x。您不能单步删除节点。删除可以通过3种不同方式完成从列表的开头删除从列表的末尾删除然后从列表的中间删除。
2、链表的应用
· 用于编译器设计中的符号表管理。
· 用于在使用Alt Tab使用循环链表实现的程序之间进行切换。
第三堆栈
堆栈是一种LIFO后进先出-最后放置的元素可以首先访问结构该结构通常在许多编程语言中都可以找到。该结构被称为堆栈因为它类似于真实世界的堆栈-板的堆栈。 Image Source: pixabay
1、堆栈操作
下面给出了可以在堆栈上执行的2个基本操作。请参考图3以更好地了解堆栈操作。
· Push 推送在堆栈顶部插入一个元素。
· Pop 弹出删除最上面的元素并返回。 Fig 3. Visualization of basic Operations of Stacks
此外为堆栈提供了以下附加功能以检查其状态。
· Peep 窥视返回堆栈的顶部元素而不删除它。
· isEmpty检查堆栈是否为空。
· isFull检查堆栈是否已满。
2、堆栈的应用
· 用于表达式评估例如用于解析和评估数学表达式的调车场算法。
· 用于在递归编程中实现函数调用。 第四队列
队列是一种FIFO先进先出-首先放置的元素可以首先访问结构该结构通常在许多编程语言中都可以找到。该结构被称为队列因为它类似于现实世界中的队列-人们在队列中等待。 Image Source: pixabay
1、队列操作
下面给出了可以在队列上执行的2个基本操作。请参考图4以更好地了解堆栈操作。
· 进队将元素插入队列的末尾。
· 出队从队列的开头删除元素。 Fig 4. Visualization of Basic Operations of Queues
2、队列的应用
· 用于管理多线程中的线程。
· 用于实施排队系统例如优先级队列。 第五哈希表 哈希表是一种数据结构用于存储具有与每个键相关联的键的值。此外如果我们知道与值关联的键则它有效地支持查找。因此无论数据大小如何插入和搜索都非常有效。
当存储在表中时直接寻址使用值和键之间的一对一映射。但是当存在大量键值对时此方法存在问题。该表将具有很多记录并且非常庞大考虑到典型计算机上的可用内存该表可能不切实际甚至无法存储。为避免此问题我们使用哈希表。关于哈希表的详细介绍可以在python入门与进阶公众号领取算法电子书
1、哈希函数
名为哈希函数h的特殊函数用于克服直接寻址中的上述问题。
在直接访问中带有密钥k的值存储在插槽k中。使用哈希函数我们可以计算出每个值都指向的表插槽的索引。使用给定键的哈希函数计算的值称为哈希值它表示该值映射到的表的索引。
· h哈希函数
· k应确定其哈希值的键
· m哈希表的大小可用插槽数。一个不接近2的精确乘方的素数是m的一个不错的选择。 Fig 5. Representation of a Hash Function
· 1→1→1
· 5→5→5
· 23→23→3
· 63→63→3
从上面给出的最后两个示例中我们可以看到当哈希函数为多个键生成相同的索引时就会发生冲突。我们可以通过选择合适的哈希函数h并使用链接和开放式寻址等技术来解决冲突。
2、哈希表的应用
· 用于实现数据库索引。
· 用于实现关联数组。
· 用于实现设置数据结构。 第六树
树是一种层次结构其中数据按层次进行组织并链接在一起。此结构与链接列表不同而在链接列表中项目以线性顺序链接。
在过去的几十年中已经开发出各种类型的树木以适合某些应用并满足某些限制。一些示例是二叉搜索树B树红黑树展开树AVL树和n元树。
1、二叉搜索树
顾名思义二进制搜索树BST是一种二进制树其中数据以分层结构进行组织。此数据结构按排序顺序存储值我们将在本课程中详细研究这些值。
二叉搜索树中的每个节点都包含以下属性。
· key存储在节点中的值。
· left指向左孩子的指针。
· 右指向正确孩子的指针。
· p指向父节点的指针。
二叉搜索树具有独特的属性可将其与其他树区分开。此属性称为binary-search-tree属性。
令x为二叉搜索树中的一个节点。
· 如果y是x左子树中的一个节点则y.key≤x.key
· 如果y是x的右子树中的节点则y.key≥x.key Fig 6. Visualization of Basic Terminology of Trees.
2、树的应用
· 二叉树用于实现表达式解析器和表达式求解器。
· 二进制搜索树用于许多不断输入和输出数据的搜索应用程序中。
· 堆由JVMJava虚拟机用来存储Java对象。
· Trap用于无线网络。 第七堆 堆是二叉树的一种特殊情况其中将父节点与其子节点的值进行比较并对其进行相应排列。
让我们看看如何表示堆。堆可以使用树和数组表示。图7和8显示了我们如何使用二叉树和数组来表示二叉堆。 Fig 7. Binary Tree Representation of a Heap Fig 8. Array Representation of a Heap
堆可以有2种类型。
· 最小堆-父项的密钥小于或等于子项的密钥。这称为min-heap属性。根将包含堆的最小值。
· 最大堆数-父项的密钥大于或等于子项的密钥。这称为max-heap属性。根将包含堆的最大值。
1、堆的应用
· 用于实现优先级队列因为可以根据堆属性对优先级值进行排序。
· 可以在Olog n时间内使用堆来实现队列功能。
· 用于查找给定数组中k个最小或最大的值。
· 用于堆排序算法。
第八图
一个图由一组有限的顶点或节点以及一组连接这些顶点的边组成。
图的顺序是图中的顶点数。图的大小是图中的边数。
如果两个节点通过同一边彼此连接则称它们为相邻节点。
1、有向图
如果图形G的所有边缘都具有指示什么是起始顶点和什么是终止顶点的方向则称该图形为有向图。
我们说uv从顶点u入射或离开顶点u然后入射到或进入顶点v。
自环从顶点到自身的边。
2、无向图
如果图G的所有边缘均无方向则称其为无向图。它可以在两个顶点之间以两种方式传播。
如果顶点未连接到图中的任何其他节点则称该顶点为孤立的。 Fig 9. Visualization of Terminology of Graphs
3、图的应用
· 用于表示社交媒体网络。每个用户都是一个顶点并且在用户连接时会创建一条边。
· 用于表示搜索引擎的网页和链接。互联网上的网页通过超链接相互链接。每页是一个顶点两页之间的超链接是一条边。用于Google中的页面排名。
· 用于表示GPS中的位置和路线。位置是顶点连接位置的路线是边。用于计算两个位置之间的最短路径。