当前位置: 首页 > news >正文

网站开发中制作视频播放器百度动态排名软件

网站开发中制作视频播放器,百度动态排名软件,百度商城网站建设,如何做网站改版文章目录 pytorch 神经网络训练demoResult参考来源 pytorch 神经网络训练demo 数据集#xff1a;MNIST 该数据集的内容是手写数字识别#xff0c;其分为两部分#xff0c;分别含有60000张训练图片和10000张测试图片 图片来源#xff1a;https://tensornews.cn/mnist_intr… 文章目录 pytorch 神经网络训练demoResult参考来源 pytorch 神经网络训练demo 数据集MNIST 该数据集的内容是手写数字识别其分为两部分分别含有60000张训练图片和10000张测试图片 图片来源https://tensornews.cn/mnist_intro/ 神经网络RNN, GRU, LSTM # Imports import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torch.utils.data import DataLoader import torchvision.datasets as datasets import torchvision.transforms as transforms# Set device device torch.device(cuda if torch.cuda.is_available() else cpu)# Hyperparameters input_size 28 sequence_length 28 num_layers 2 hidden_size 256 num_classes 10 learning_rate 0.001 batch_size 64 num_epochs 2# Create a RNN class RNN(nn.Module):def __init__(self, input_size, hidden_size, num_layers, num_classes):super(RNN, self).__init__()self.hidden_size hidden_sizeself.num_layers num_layersself.rnn nn.RNN(input_size, hidden_size, num_layers, batch_firstTrue)self.fc nn.Linear(hidden_size*sequence_length, num_classes) # fully connecteddef forward(self, x):h0 torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)# Forward Propout, _ self.rnn(x, h0)out out.reshape(out.shape[0], -1)out self.fc(out)return out# Create a GRU class RNN_GRU(nn.Module):def __init__(self, input_size, hidden_size, num_layers, num_classes):super(RNN_GRU, self).__init__()self.hidden_size hidden_sizeself.num_layers num_layersself.gru nn.GRU(input_size, hidden_size, num_layers, batch_firstTrue)self.fc nn.Linear(hidden_size*sequence_length, num_classes) # fully connecteddef forward(self, x):h0 torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)# Forward Propout, _ self.gru(x, h0)out out.reshape(out.shape[0], -1)out self.fc(out)return out# Create a LSTM class RNN_LSTM(nn.Module):def __init__(self, input_size, hidden_size, num_layers, num_classes):super(RNN_LSTM, self).__init__()self.hidden_size hidden_sizeself.num_layers num_layersself.lstm nn.LSTM(input_size, hidden_size, num_layers, batch_firstTrue)self.fc nn.Linear(hidden_size*sequence_length, num_classes) # fully connecteddef forward(self, x):h0 torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)c0 torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)# Forward Propout, _ self.lstm(x, (h0, c0))out out.reshape(out.shape[0], -1)out self.fc(out)return out# Load data train_dataset datasets.MNIST(rootdataset/, trainTrue, transformtransforms.ToTensor(),downloadTrue) train_loader DataLoader(datasettrain_dataset, batch_sizebatch_size, shuffleTrue) test_dataset datasets.MNIST(rootdataset/, trainFalse, transformtransforms.ToTensor(),downloadTrue) test_loader DataLoader(datasettest_dataset, batch_sizebatch_size, shuffleTrue)# Initialize network 选择一个即可 model RNN(input_size, hidden_size, num_layers, num_classes).to(device) # model RNN_GRU(input_size, hidden_size, num_layers, num_classes).to(device) # model RNN_LSTM(input_size, hidden_size, num_layers, num_classes).to(device)# Loss and optimizer criterion nn.CrossEntropyLoss() optimizer optim.Adam(model.parameters(), lrlearning_rate)# Train network for epoch in range(num_epochs):# data: images, targets: labelsfor batch_idx, (data, targets) in enumerate(train_loader):# Get data to cuda if possibledata data.to(device).squeeze(1) # 删除一个张量中所有维数为1的维度 (N, 1, 28, 28) - (N, 28, 28)targets targets.to(device)# forwardscores model(data) # 64*10loss criterion(scores, targets)# backwardoptimizer.zero_grad()loss.backward()# gradient descent or adam stepoptimizer.step()# Check accuracy on training test to see how good our model def check_accuracy(loader, model):if loader.dataset.train:print(Checking accuracy on training data)else:print(Checking accuracy on test data)num_correct 0num_samples 0model.eval()with torch.no_grad(): # 不计算梯度for x, y in loader:x x.to(device).squeeze(1)y y.to(device)# x x.reshape(x.shape[0], -1) # 64*784scores model(x)# 64*10_, predictions scores.max(dim1) #dim1表示对每行取最大值每行代表一个样本。num_correct (predictions y).sum()num_samples predictions.size(0) # 64print(fGot {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}%)model.train()check_accuracy(train_loader, model) check_accuracy(test_loader, model) Result RNN Result Checking accuracy on training data Got 57926 / 60000 with accuracy 96.54% Checking accuracy on test data Got 9640 / 10000 with accuracy 96.40%GRU Result Checking accuracy on training data Got 59058 / 60000 with accuracy 98.43% Checking accuracy on test data Got 9841 / 10000 with accuracy 98.41%LSTM Result Checking accuracy on training data Got 59248 / 60000 with accuracy 98.75% Checking accuracy on test data Got 9849 / 10000 with accuracy 98.49%参考来源 【1】https://www.youtube.com/watch?vGl2WXLIMvKAlistPLhhyoLH6IjfxeoooqP9rhU3HJIAVAJ3Vzindex5
http://www.w-s-a.com/news/949513/

相关文章:

  • 广东网站开发推荐网页制作个人简历模板教程
  • e建网保定百度seo公司
  • 网站建设中html代码网络培训课堂app
  • 无锡做网站seo自己做的网站如何上传网上
  • 园林景观网站模板小白怎么做跨境电商
  • 找第三方做网站 需要注意企业网站带数据库
  • 北京南站到北京站flash网站制作单选框和复选框ui组件
  • 网站建设核电集团网站设计案例
  • 宝塔做的网站能不能访问上海的广告公司网站建设
  • 网站会员系统方案新能源网站建设哪家好
  • 全球网站域名域名被墙查询
  • 做期货看资讯什么网站好哈尔滨网站设计联系方式
  • 建站宝盒免费下载上海网论坛网址
  • 国内最有趣的25个网站推广流程
  • 红河做网站抖音小程序怎么挂到抖音上
  • 高度重视机关门户网站建设外包
  • 网站里面送礼物要钱怎么做代码网站开发怎么对接客户
  • 泰州网站制作策划如何做网站需求
  • 门户网站优化报价软件技术公司
  • 怎样换网站logo公司名字大全集免费
  • 为网站网站做推广各类最牛网站建设
  • 网站用自己的电脑做服务器佛山做网站制作公司
  • 一个网站如何做cdn加速器如何上传网站数据库
  • 汝州住房和城乡建设局新网站营销网站定位
  • yy直播官网seo引擎优化是什
  • 做影视网站违法莫品牌营销是什么
  • 全网最稳最低价自助下单网站wordpress电影网站主题
  • 域名更换网站温州建设工程网站
  • 网站如何优化推广连锁店管理网站开发
  • 伊宁市做网站功能性质网站