哈尔滨网站建设丿薇,网站自定义title,昆明网络建站公司,家装设计师培训课程文章目录 卷积神经网络(CNN)的中阶应用:从图像分类到目标检测1. 图像分类:CNN的基础应用CNN结构概述经典网络架构2. 目标检测:从分类到定位基于区域的目标检测方法单阶段目标检测方法边界框回归与NMS(Non-Maximum Suppression)3. 深度学习中的目标检测挑战与解决方案4. … 文章目录 卷积神经网络(CNN)的中阶应用:从图像分类到目标检测1. 图像分类:CNN的基础应用CNN结构概述经典网络架构 2. 目标检测:从分类到定位基于区域的目标检测方法单阶段目标检测方法边界框回归与NMS(Non-Maximum Suppression) 3. 深度学习中的目标检测挑战与解决方案4. 目标检测与其他计算机视觉任务的结合5. 总结与展望 卷积神经网络(CNN)的中阶应用:从图像分类到目标检测
卷积神经网络(CNN)是深度学习中最为广泛应用的一类模型,特别在计算机视觉领域,如图像分类、目标检测、语义分割等任务中,发挥了巨大作用。本文将从图像分类的基础应用出发,逐步深入到目标检测等中阶应用,介绍CNN在这些领域中的应用与发展。 1. 图像分类:CNN的基础应用
图像分类是计算机视觉中的基本任务之一,目标是将输入图像分配到一个或多个类别中。卷积神经网络(CNN)在图像分类任务中非常有效,特别是在图像的特征提取和分类决策方面,CNN能够通过卷积操作自动学习图像的局部特征。
CNN结构概述
CNN通常包括以下几层:
卷积层(Convolutional Layer): 用于提取图像的局部特征。卷积层通过卷积核(或称滤波器)扫描输入图像,生成特征图(Feature Map)。池化层(Pooling Layer): 用于减少特征图的维度,从而减小计算量