当前位置: 首页 > news >正文

临沂市建设工程多图联审系统 网站wordpress知识库主题

临沂市建设工程多图联审系统 网站,wordpress知识库主题,专业建设总结,广西住房城乡建设厅使用的命令#xff1a;iostat -x 5 可以看到 ssd的利用率已经满了。 之前在的数据集放在了 hdd上#xff0c;训练结果特别慢。 所以我把它移动到了ssd上#xff0c;然后训练参数用的 resume#xff0c; 但是#xff01;#xff01;#xff01;#xff01;它把历史记住… 使用的命令iostat -x 5 可以看到 ssd的利用率已经满了。 之前在的数据集放在了 hdd上训练结果特别慢。 所以我把它移动到了ssd上然后训练参数用的 resume 但是它把历史记住了仍然不从ssd上来取数据。 配置文件的路径也换了但它还是会去找旧的。 现在的100% 是扫描数据的100% 因数数据集15G~20G还是比较多的。 engine/trainer: taskdetect, modetrain, model/home/justin/Desktop/code/python_project/Jersey-Number/yolov8n.pt, data/home/justin/Desktop/code/python_project/Jersey-Number/datasets/20240511_four_in_1/data_head_person_hoop_number/data.yaml, epochs1000, timeNone, patience100, batch64, imgsz640, saveTrue, save_period-1, cacheFalse, device[0, 1], workers8, projectNone, nametrain70, exist_okFalse, pretrainedTrue, optimizerauto, verboseTrue, seed0, deterministicTrue, single_clsFalse, rectFalse, cos_lrFalse, close_mosaic10, resumeFalse, ampTrue, fraction1.0, profileFalse, freezeNone, multi_scaleFalse, overlap_maskTrue, mask_ratio4, dropout0.0, valTrue, splitval, save_jsonFalse, save_hybridFalse, confNone, iou0.7, max_det300, halfFalse, dnnFalse, plotsTrue, sourceNone, vid_stride1, stream_bufferFalse, visualizeFalse, augmentFalse, agnostic_nmsFalse, classesNone, retina_masksFalse, embedNone, showFalse, save_framesFalse, save_txtFalse, save_confFalse, save_cropFalse, show_labelsTrue, show_confTrue, show_boxesTrue, line_widthNone, formattorchscript, kerasFalse, optimizeFalse, int8False, dynamicFalse, simplifyFalse, opsetNone, workspace4, nmsFalse, lr00.01, lrf0.01, momentum0.937, weight_decay0.0005, warmup_epochs3.0, warmup_momentum0.8, warmup_bias_lr0.1, box7.5, cls0.5, dfl1.5, pose12.0, kobj1.0, label_smoothing0.0, nbs64, hsv_h0.015, hsv_s0.7, hsv_v0.4, degrees0.0, translate0.1, scale0.5, shear0.0, perspective0.0, flipud0.0, fliplr0.5, bgr0.0, mosaic1.0, mixup0.0, copy_paste0.0, auto_augmentrandaugment, erasing0.4, crop_fraction1.0, cfgNone, trackerbotsort.yaml, save_dirruns/detect/train70 Overriding model.yaml nc80 with nc4from n params module arguments 0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2] 1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2] 2 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True] 3 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2] 4 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True] 5 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2] 6 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True] 7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2] 8 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True] 9 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5] 10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, nearest] 11 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] 12 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1] 13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, nearest] 14 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] 15 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1] 16 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2] 17 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1] 18 -1 1 123648 ultralytics.nn.modules.block.C2f [192, 128, 1] 19 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] 20 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1] 21 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1] 22 [15, 18, 21] 1 752092 ultralytics.nn.modules.head.Detect [4, [64, 128, 256]] Model summary: 225 layers, 3011628 parameters, 3011612 gradients, 8.2 GFLOPsTransferred 319/355 items from pretrained weights DDP: debug command /home/justin/miniconda3/bin/python -m torch.distributed.run --nproc_per_node 2 --master_port 41127 /home/justin/.config/Ultralytics/DDP/_temp_uog7ddsr140402595641744.py WARNING:__main__: ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** Ultralytics YOLOv8.2.1 Python-3.11.0 torch-2.3.0cu121 CUDA:0 (NVIDIA GeForce RTX 4090, 24210MiB)CUDA:1 (NVIDIA GeForce RTX 4090, 24188MiB) TensorBoard: Start with tensorboard --logdir runs/detect/train70, view at http://localhost:6006/ Overriding model.yaml nc80 with nc4 Transferred 319/355 items from pretrained weights Freezing layer model.22.dfl.conv.weight AMP: running Automatic Mixed Precision (AMP) checks with YOLOv8n... /home/justin/miniconda3/lib/python3.11/site-packages/torch/nn/modules/conv.py:456: UserWarning: Plan failed with a cudnnException: CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR: cudnnFinalize Descriptor Failed cudnn_status: CUDNN_STATUS_NOT_SUPPORTED (Triggered internally at ../aten/src/ATen/native/cudnn/Conv_v8.cpp:919.)return F.conv2d(input, weight, bias, self.stride, AMP: checks passed ✅ train: Scanning /home/justin/Desktop/code/python_project/Jersey-Number/datasets/20240511_four_in_1/data_head_person_hoop_number/train/ train: Scanning /home/justin/Desktop/code/python_project/Jersey-Number/datasets/20240511_four_in_1/data_head_person_hoop_number/train/train: Scanning /home/justin/Desktop/code/python_project/Jersey-Number/datasets/20240511_four_in_1/data_head_person_hoop_number/train/train: Scanning /home/justin/Desktop/code/python_project/Jersey-Number/datasets/20240511_four_in_1/data_head_person_hoop_number/train/ train: Scanning /home/justin/Desktop/code/python_project/Jersey-Number/datasets/20240511_four_in_1/data_head_person_hoop_number/train/ train: Scanning /home/justin/Desktop/code/python_project/Jersey-Number/datasets/20240511_four_in_1/data_head_person_hoop_number/train/train: Scanning /home/justin/Desktop/code/python_project/Jersey-Number/datasets/20240511_four_in_1/data_head_person_hoop_number/train/train: Scanning /home/justin/Desktop/code/python_project/Jersey-Number/datasets/20240511_four_in_1/data_head_person_hoop_number/train/我就是看这里 train: WARNING ⚠️ /home/justin/Desktop/code/python_project/Jersey-Number/datasets/20240511_four_in_1/data_head_person_hoop_number/train/images/284193,42a000df17be3d.jpg: 1 duplicate labels removed train: WARNING ⚠️ /home/justin/Desktop/code/python_project/Jersey-Number/datasets/20240511_four_in_1/data_head_person_hoop_number/train/images/284193,575c000f3f01e40.jpg: 1 duplicate labels removed train: WARNING ⚠️ /home/justin/Desktop/code/python_project/Jersey-Number/datasets/20240511_four_in_1/data_head_person_hoop_number/train/images/284193,70d2000c58fbf86.jpg: 1 duplicate labels removed train: WARNING ⚠️ /home/justin/Desktop/code/python_project/Jersey-Number/datasets/20240511_four_in_1/data_head_person_hoop_number/train/images/284193,880000198e8148.jpg: 1 duplicate labels removed看出路径不对了然后from scratch开始训练就好使了。 然而并无卵用确实换到ssd上了还是很差应该是碎文件所致哎。。。所以深度学习级别的hello world 用plk存储文件是有道理的为了不让他那么碎啊 个人理解啊。
http://www.w-s-a.com/news/139596/

相关文章:

  • 网站备案系统苏州网站设计网站开发公司
  • 怎么样做微网站著名企业vi设计
  • 三分钟做网站网页设计心得体会100字
  • 网站建设支付宝seo建站是什么
  • 常州做网站的 武进学雷锋_做美德少年网站
  • 怎样建网站赚钱贵州seo和网络推广
  • 创建网站的工具站内seo优化
  • 网站特效 站长查询网网站
  • 百度移动端网站网站建设设计思想
  • 青岛建设官方网站南宁制作企业网站
  • 校园网站建设管理工作制度大网站开发费用
  • 做logo赚钱的网站分类网站 模板
  • 网站建设完成报告织梦网站怎么做备份
  • 邯郸市城乡建设管理局网站vimwiki wordpress
  • 如何修改wordpress站名如何制作公司网站
  • 宁波网站建设与推广方案网站有了备案号之后能做什么
  • 汕头手机端建站模板pinterest app下载
  • 网站主机免费宁波网站建设优化诊断
  • 吧网站做软件的软件下载简单的ui界面制作
  • 陕西网站制作公司网页制作与设计代码
  • 做网站行情郑州微信网站开发
  • 河间网站建设制作null wordpress theme
  • h5网站制作网站开发网站建设文翻译工作
  • 网站建设 税种秦皇岛哪有网站优化公司
  • 专业开发网站设计找人做网页需要多少钱
  • 手机购物网站 建站网站建设网站制作网站设计
  • 基于iview的网站开发模板小程序制作需要什么语言
  • 精美网站设计保定建行网站首页登录
  • 网站建设常见问题做网站保存什么格式最好
  • 营销型网站建设与网页设计网站建设 amp 找VX cp5173