当前位置: 首页 > news >正文

长沙专业做网站公司哪家好dede网站 设置404 错误页面

长沙专业做网站公司哪家好,dede网站 设置404 错误页面,重庆金融网站建设,搜索引擎优化实训垃圾标记阶段 对象存活判断#xff1a;在堆里存放着几乎所有的Java对象实例#xff0c;在GC执行垃圾回收之前#xff0c;首先需要区分出内存中哪些是存活对象#xff0c;哪些是已经死亡的对象。只有被标记为己经死亡的对象#xff0c;GC才会在执行垃圾回收时#xff0c;…垃圾标记阶段 对象存活判断在堆里存放着几乎所有的Java对象实例在GC执行垃圾回收之前首先需要区分出内存中哪些是存活对象哪些是已经死亡的对象。只有被标记为己经死亡的对象GC才会在执行垃圾回收时释放掉其所占用的内存空间因此这个过程我们可以称为垃圾标记阶段。那么在JVM中究竟是如何标记一个死亡对象呢简单来说当一个对象已经不再被任何的存活对象继续引用时就可以宣判为已经死亡。判断对象存活一般有两种方式引用计数算法和可达性分析算法。 引用计数法 (java没有采用) 引用计数算法Reference Counting比较简单对每个对象保存一个整型 的引用计数器属性。用于记录对象被引用的情况。对于一个对象A只要有任何一个对象引用了A则A的引用计数器就加1当引用失效时引用计数器就减1。只要对象A的引用计数器的值为0即表示对象A不可能再被使用可进行回收。优点实现简单垃圾对象便于辨识判定效率高回收没有延迟性。缺点 ➢它需要单独的字段存储计数器这样的做法增加了存储空间的开销。➢每次赋值都需要更新计数器伴随着加法和减法操作这增加了时间开销。➢引用计数器有一个严重的问题即无法处理循环引用的情况。这是一 条致命缺陷导致在Java的垃圾回收器中没有使用这类算法。 循环引用导致的内存泄漏情况 证明java使用的不是引用计数算法 示例代码 /*** -XX:PrintGCDetails* 证明java使用的不是引用计数算法*/ public class RefCountGC {//这个成员属性唯一的作用就是占用一点内存private byte[] bigSize new byte[5 * 1024 * 1024];//5MB仅仅意味着只要创建我这个RefCountGC对象实例就会占用5M的堆空间Object reference null;public static void main(String[] args) {RefCountGC obj1 new RefCountGC();RefCountGC obj2 new RefCountGC();obj1.reference obj2;obj2.reference obj1;obj1 null;obj2 null;//显式的执行垃圾回收行为//这里发生GCobj1和obj2能否被回收能证明Java没有采用引用计数算法System.gc();try {Thread.sleep(1000000);} catch (InterruptedException e) {e.printStackTrace();}} } 引用计数法的弊端即使把obj1 一reference和obj2 一reference(栈引用)置null。 则在Java堆当中的两块内存依然保持着互相引用无法回收。 但是把obj1 一reference和obj2 一reference置为null之后如果显示的去调用System.gc();这里将会发生GC回收堆中bj1和obj2实体。从而证明Jlava没有采用引用计数算法 . 可达性分析算法 也叫根搜索算法或追踪性垃圾收集 相对于引用计数算法而言可达性分析算法不仅同样具备实现简单和执行高 效等特点更重要的是该算法可以有效地解决在引用计数算法中循环引用的问题防止内存泄漏的发生。相较于引用计数算法这里的可达性分析就是Java、C#选择的。这种类型的垃圾收集通常也叫作追踪性垃圾收集Tracing GarbageCollection。所谓GC Roots根集合就是一组必须活跃的引用。 ➢可达性分析算法是以根对象集合(GCRoots为起始点按照从上至下的方式搜索被根对象集合所连接的目标对象是否可达。➢使用可达性分析算法后内存中的存活对象都会被根对象集合直接或间接连接着搜索所走过的路径称为引用链Reference Chain➢如果目标对象没有任何引用链相连则是不可达的就意味着该对象己经死亡可以标记为垃圾对象。GC Roots 在Java语言中GC Roots对象包括以下几类元素 1.虚拟机栈中引用的对象➢比如各个线程当中被调用的方法中使用到的参数、局部变量等。 2.本地方法栈内JNI通常说的本地方法引用的对象 3.方法区中类静态属性引用的对象➢比如Java类的引用类型静态变量 Class Dog {private static Object tail; } 4.方法区中常量引用的对象➢比如字符串常量池string Table 里的引用 Class Dog {private final Object tail; } 5.所有被同步锁synchroni zed持有的对象 6.Java虚拟机内部的引用➢基本数据类型对应的Class对象一些常驻的异常对象如 NullPointerException、OutOfMemoryError 系统类加载器。 7.反映java虚拟机内部情况的JMXBean、JVMTI中注册的回调、本地代码缓存等. 8.除了这些固定的GCRoots集合以外根据用户所选用的垃圾收集器以及当 前回收的内存区域不同还可以有其他对象“临时性”地加入共同构成完整GC Roots集合。比如分代收集和局部回收Partial GC。➢如果只针对Java堆中的某一块区域进行垃圾回收比如典型的只针 对新生代必须考虑到内存区域是虚拟机自己的实现细节更不是孤立封闭的这个区域的对象完全有可能被其他区域的对象所引用这时候就需要一.并将关联的区域对象也加入GC Roots集合中去考虑才能保证可达性分析的准确性。 9.小技巧由于Root采用栈方式存放变量和指针所以如果一个指针它保存了堆内存里面的对象但是自己又不存放在堆内存里面那它就是一个Root 注意 如果要使用可达性分析算法来判断内存是否可回收那么分析工作必须在 一个能保障一致性的快照中进行。这点不满足的话分析结果的准确性就无法保证。 ➢即使是号称几乎不会发生停顿的CMS收集器中枚举根节点时也是必须要停顿的。这点也是导致GC进行时必须“StopTheWorld的一个重要原因。 对象的finalization机制 Java语言提供了对象终止finalization机制来允许开发人员提供对象被销毁之前的自定义处理逻辑。当垃圾回收器发现没有引用指向一个对象即垃圾回收此对象之前总会先调用这个对象的finalize方法。finalize方法允许在子类中被重写用于在对象被回收时进行资源释放。通常在这个方法中进行一些资源释放和清理的工作比如关闭文件、套接字和数据库连接等。应该交给垃圾回收机制调用永远不要主动调用某个对象的finalize 方法。理由包括下面三点 意思是如果你重写了finalizefinalize会在一个低优先级的线程中等待自动执行前提是发生了GC不需要人为主动的去调用。➢在finalize 时可能会导致对象复活。➢finalize方法的执行时间是没有保障的它完全由Gc线程决定极端情况下若不发生GC则finalize 方法将没有执行机会。➢一个糟糕的finalize 会严重影响GC的性能。从功能上来说finalize方法与C 中的析构函数比较相似但是Java采用的是基于垃圾回收器的自动内存管理机制所以finalize方法在本质上不同于C 中的析构函数。 对象是否死亡 由于finalize 方法的存在虚拟机中的对象一般处于三种可能的状如果从所有的根节点都无法访问到某个对象说明对象己经不再使用了。一般来说此对象需要被回收。但事实上也并非是“非死不可”的这时候它们暂时处于“缓刑”阶段。一个无法触及的对象有可能在某一个条件下“复活”自己如果这样那么对它的回收就是不合理的为此定义虚拟机中的对象可能的三种状态。如下 ➢可触及的从根节点开始可以到达这个对象。➢可复活的对象的所有引用都被释放但是对象有可能在finalize中复活。➢不可触及的对象的finalize被调用并且没有复活那么就会进入不可触及状态。不可触及的对象不可能被复活因为finalize 只会被调用1次。以上3种状态中是由于finalize方法的存在进行的区分。只有在对象不可触及时才可以被回收。 判定是否可以回收具体过程 判定一个对象objA是否可回收至少要经历两次标记过程 过程1.如果对象objA到GC Roots没有引用链则进行第一 次标记。 过程2.进行筛选判断此对象是否有必要执行finalize方法 ①如果对 象objA没有重写finalize方法或者finalize 方法已经被虚拟机调用过则虚拟机视为“没有必要执行”objA被判定为不可触及的。②如果对象objA重写了finalize方法且还未执行过那么objA会被插入到F一Queue队列中由一个虚拟机自动创建的、低优先级的Finalizer线程触发其finalize方法执行。③finalize方法是对象逃脱死亡的最后机会稍后Gc会对F一Queue队列中的对象进行第二次标记。如果objA在finalize方法中与引用链上的任何一个对象建立了联系那么在第二次标记时objA会被移出“即将回收”集合。之后对象会再次出现没有引用存在的情况。在这个情况下finalize方法不会被再次调用对象会直接变成不可触及的状态也就是说一个对象的finalize方法只会被调用一次。 代码测试对象可复活 /*** 测试Object类中finalize()方法即对象的finalization机制。**/ public class CanReliveObj {public static CanReliveObj obj;//类变量属于 GC Root//此方法只能被调用一次Overrideprotected void finalize() throws Throwable {super.finalize();System.out.println(调用当前类重写的finalize()方法);obj this;//当前待回收的对象在finalize()方法中与引用链上的一个对象obj建立了联系}public static void main(String[] args) {try {obj new CanReliveObj();// 对象第一次成功拯救自己obj null;System.gc();//调用垃圾回收器System.out.println(第1次 gc);// 因为Finalizer线程优先级很低暂停2秒以等待它Thread.sleep(2000);if (obj null) {System.out.println(obj is dead);} else {System.out.println(obj is still alive);}System.out.println(第2次 gc);// 下面这段代码与上面的完全相同但是这次自救却失败了obj null;System.gc();// 因为Finalizer线程优先级很低暂停2秒以等待它Thread.sleep(2000);if (obj null) {System.out.println(obj is dead);} else {System.out.println(obj is still alive);}} catch (InterruptedException e) {e.printStackTrace();}} } 控制台输出 第1次 gc 调用当前类重写的finalize()方法 obj is still alive 第2次 gc obj is dead 使用(MAT与JProfiler)工具分析GCRoots MAT是Memory Analyzer的简称它是一 款功能强大的Java堆内存分析器。用于查找内存泄漏以及查看内存消耗情况。 MAT是基于Eclipse开发的是一款免费的性能分析工具。 可以在http://www.eclipse org/mat/下载并使用MAT。 获取dump文件 方式1: 命令行使用jmap jpsjmap -dump:formatb,live,filetest1.bin {进程id} 方式2使用JVisualVM导出 捕获的heap dump文件是一个临时文件关闭JVisua1VM后自动删除若要保留需要将其另存为文件。可通过以下方法捕获heap dump ➢在左侧“Application”应用程序子窗口中右击相应的应用程序选择Heap Dump堆Dump。➢在Monitor 监视子标签页中点击Heap Dump 堆Dump按钮。本地应用程序的Heap dumps作为应用程序标签页的一个子标签页打开。同时 heap dump在左侧的Application 应用程序栏中对应一个含有时间戳的节点。右击这个节点选择save as 另存为即可将heap dump保存到本地。GC Roots分析 public class GCRootsTest {public static void main(String[] args) {ListObject numList new ArrayList();Date birth new Date();for (int i 0; i 100; i) {numList.add(String.valueOf(i));try {Thread.sleep(10);} catch (InterruptedException e) {e.printStackTrace();}}System.out.println(数据添加完毕请操作);new Scanner(System.in).next();numList null;birth null;System.out.println(numList、birth已置空请操作);new Scanner(System.in).next();System.out.println(结束);} } 使用MAT查看GC Roots 使用jProfiler进行GC溯源 使用Jprofiler分析OOM /*** -Xms8m -Xmx8m -XX:HeapDumpOnOutOfMemoryError**/ public class HeapOOM {byte[] buffer new byte[1 * 1024 * 1024];//1MBpublic static void main(String[] args) {ArrayListHeapOOM list new ArrayList();int count 0;try{while(true){list.add(new HeapOOM());count;}}catch (Throwable e){System.out.println(count count);e.printStackTrace();}} } 控制台输出 java.lang.OutOfMemoryError: Java heap space Dumping heap to java_pid45386.hprof ... Heap dump file created [7390812 bytes in 0.019 secs] count 6 java.lang.OutOfMemoryError: Java heap spaceat com.dsh.jvm.gc.algorithm.HeapOOM.init(HeapOOM.java:12)at com.dsh.jvm.gc.algorithm.HeapOOM.main(HeapOOM.java:20) 对应count6 出现OOM的代码 垃圾清除阶段 当成功区分出内存中存活对象和死亡对象后GC接下来的任务就是执行垃圾回收释放掉无用对象所占用的内存空间以便有足够的可用内存空间为新对象分配内存。 目前在JVM中比较常见的三种垃圾收集算法是标记一清除算法 Mark一Sweep、复制算法Copying、标记一压缩算法Mark一Compact。 标记-清除算法 标记一清除算法Mark一Sweep是一种非常基础和常见的垃圾收集算法该算法被J . McCarthy等人在1960年提出并并应用于Lisp语言。 当堆中的有效内存空间available memory 被耗尽的时候就会停止整个程序也被称为stop the world然后进行两项工作第一项则是标记第二项则是清除。 标记 Collector从引用根节点开始遍历标记所有被引用的对象。一般是在对象的Header中记录为可达对象。清除 Collector对堆 内存从头到尾进行线性的遍历如果发现某个对象在其Header中没有标记为可达对象则将其回收。标记清除算法的缺点 ➢效率不算高➢在进行Gc的时候需要停止整个应用程序导致用户体验差。➢这种方式清理出来的空闲内存是不连续的产生内存碎片。需要维护一个空闲列表。 注意何为清除 这里所谓的清除并不是真的置空而是把需要清除的对象地址保存在空闲 的地址列表里。下次有新对象需要加载时判断垃圾的位置空间是否够如果够就存放。 复制算法 为了解决标记一清除算法在垃圾收集效率方面的缺陷M.L.Minsky于1963年发表了著名的论文“ 使用双存储区的Li sp语言垃圾收集器CALISP Garbage Collector Algorithm Using SerialSecondary Storage ”。M.L. Minsky在该论文中描述的算法被人们称为复制Copying算法它也被M. L.Minsky本人成功地引入到了Lisp语言的一个实现版本中。 将活着的内存空间分为两块每次只使用其中一块在垃圾回收时将正在使用的内存中的存活对象复制到未被使用的内存块中之后清除正在使用的内存块中的所有对象交换两个内存的角色最后完成垃圾回收。堆中S0和S1使用的就是复制算法。 复制算法优缺点 没有标记和清除过程实现简单运行高效复制过去以后保证空间的连续性不会出现“碎片”问题。 此算法的缺点也是很明显的就是需要两倍的内存空间。对于G1这种分拆成为大量region的GC复制而不是移动意味着GC需要维护region之间对象引用关系不管是内存占用或者时间开销也不小。 如果系统中的垃圾对象很多复制算法需要复制的存活对象数量并不会太大。因此在真正需要垃圾回收的时刻复制算法的效率是很高的。 又由于对象在垃圾回收过程中统一被复制到新的内存空间中因此可确保回收后的内存空间是没有碎片的。该算法的缺点是将系统内存折半。 应用场景 在新生代对常规应用的垃圾回收一次通常可以回收708一 99的内存空间。回收性价比很高。所以现在的商业虚拟机都是用这种收集算法回收新生代。 标记-压缩(整理,Mark-Compact)算法 复制算法的高效性是建立在存活对象少、垃圾对象多的前提下的。这种情况在新生代经常发生。 但是在老年代更常见的情况是大部分对象都是存活对象。如果依然使用复制算法由于存活对象较多复制的成本也将很高。 因此基于老年代垃圾回收的特性需要使用其他的算法。标记一清除算法的确可以应用在老年代中但是该算法不仅执行效率低下而且在执行完内存回收后还会产生内存碎片所以JVM的设计者需要在此基础之上进行改进。标记一压缩Mark一Compact 算法由此诞生。1970年前后G. L. Steele 、C. J. Chene和D.S. Wise 等研究者发布标记一压缩算法。在许多现代的垃圾收集器中人们都使用了标记一压缩算法或其改进版本。 标记压缩算法执行过程 第一阶段和标记一清除算法一样从根节点开始标记所有被引用对象. 第二阶段将所有的存活对象压缩到内存的一端按顺序排放。 之后清理边界外所有的空间 标记一压缩算法的最终效果等同于标记一清除算法执行完成后再进行一次内存碎片整理因此也可以把它称为标记一清除一压缩Mark一 Sweep一Compact算法。 二者的本质差异在于标记一清除算法是一种非移动式的回收算法标记一压.缩是移动式的。是否移动回收后的存活对象是一项优缺点并存的风险决策。 可以看到标记的存活对象将会被整理按照内存地址依次排列而未被标记的内存会被清理掉。 如此一来当我们需要给新对象分配内存时JVM只需要持有一个内存的起始地址即可这比维护一个空闲列表显然少了许多开销。 指针碰撞Bump the Pointer 如果内存空间以规整和有序的方式分布即已用和未用的内存都各自一边彼此之间维系着一个记录下一次分配起始点的标记指针当为新对象分配内存时只需要通过修改指针的偏移量将新对象分配在第一个空闲内存位置上这种分配方式就叫做指针碰撞Bump the Pointer 。 标记压缩算法优点 消除了标记一清除算法当中内存区域分散的缺点。我们需要给新对象分配内存时JVM只 需要持有一个内存的起始地址即可。消除了复制算法当中内存减半的高额代价。 标记压缩算法缺点 从效率.上来说标记一整理算法要低于复制算法。移动对象的同时如果对象被其他对象引用则还需要调整引用的地址。· 移动过程中需要全程暂停用户应用程序。即 STW 以上三种垃圾回收算法对比 速度上来说复制算法是当之无愧的老大但是却浪费了太多内存。而为了尽量兼顾上面提到的三个指标标记一整理算法相对来说更平滑一些但是效率/速度上不尽如人意它比复制算法多了一个标记的阶段比标记一清除多了一个整理内存的阶段。 分代收集算法 难道就没有一种最优的算法么?没有最好的算法,只有更合适的算法。前面所有这些算法中并没有一种算法可以完全替代其他算法它们都具有自己独特的优势和特点。分代收集算法应运而生。、 分代收集算法是基于这样一个事实不同的对象的生命周期是不一样的。因此不同生命周期的对象可以采取不同的收集方式以便提高回收效率。一般是把Java堆分为新生代和老年代这样就可以根据各个年代的特点使用不同的回收算法以提高垃圾回收的效率。 在Java程序运行的过程中会产生大量的对象其中有些对象是与业务信息相关比如Http请求中的Session对象、线程、Socket连接 这类对象跟业务直接挂钩因此生命周期比较长。 但是还有一些对象主要是程序运行过程中生成的临时变量这些对象生命周期会比较短比如 String对象 由于其不变类的特性系统会产生大量的这些对象有些对象甚至只用一次即可回收。 目前几乎所有的GC都是采用分代收集Generational Collecting 算法执行垃圾回收的。在HotSpot中基于分代的概念GC所使用的内存回收算法必须结合年轻代和老年代各自的特点。 年轻代Young Gen 年轻代特点区域相对老年代较小对象生命周期短、存活率低回收频繁。这种情况复制算法的回收整理速度是最快的。复制算法的效率只和当前存活对象大小有关因此很适用于年轻代的回收。而复制算法内存利用率不高的问题通过hotspot中的两个survivor的设计得到缓解伊甸园幸存者81。· 老年代Tenured Gen 老年代特点区域较大对象生命周期长、存活率高回收不及年轻代频繁。这种情况存在大量存活率高的对象复制算法明显变得不合适。一般是由标记一清除或者是标记一清除与标记一整理的混合实现。 ➢Mark阶段的开销与存活对象的数量成正比。➢Sweep阶段的开销与所管理区域的大小成正相关。➢Compact阶段的开销与存活对象的数据成正比。 以HotSpot中的CMS回收器为例CMS是基于Mark一 Sweep实现的对于对象的回收效率很高。而对于碎片问题CMS采用基于Mark一Compact算法的Serial 0ld回收器作为补偿措施当内存回收不佳碎片导致的Concurrent Mode Failure时将采用Serial 0ld执行Full GC以达到对老年代内存的整理。 分代的思想被现有的虚拟机广泛使用。几乎所有的垃圾回收器都区分新生代和老年代。   增量收集算法 上述现有的算法在垃圾回收过程中应用软件将处于一种stop the World的状态。在Stop the World状态下应用程序所有的线程都会挂起暂停一切正常的工作等待垃圾回收的完成。如果垃圾回收时间过长应用程序会被挂起很久将严重影响用户体验或者系统的稳定性。为了解决这个问题即对实时垃圾收集算法的研究直接导致了增量收集Incremental Collecting 算法的诞生。 增量收集算法基本思想 如果一次性将所有的垃圾进行处理需要造成系统长时间的停顿那么就可以让垃圾收集线程和应用程序线程交替执行。每次垃圾收集线程只收集一小片区域的内存空间接着切换到应用程序线程。依次反复直到垃圾收集完成。 总的来说增量收集算法的基础仍是传统的标记一清除和复制算法。增量收集算法通过对线程间冲突的妥善处理允许垃圾收集线程以分阶段的方式完成标记、清理或复制工作。 增量收集算法优缺点 使用这种方式由于在垃圾回收过程中间断性地还执行了应用程序代码所以能减少系统的停顿时间。 但是因为线程切换和上下文转换的消耗会使得垃圾回收的总体成本上升造成系统吞吐量的下降。 分区算法G1回收器 一般来说在相同条件下堆空间越大一次GC时所需要的时间就越长有关GC产生的停顿也越长。 为了更好地控制GC产生的停顿时间将一块大的内存区域分割成多个小块根据目标的停顿时间每次合理地回收若干个小区间而不是整个堆空间从而减少一次GC所产生的停顿。 分代算法将按照对象的生命周期长短划分成两个部分而分区算法将整个堆空间划分成连续的不同小区间。 每一个小区间都独立使用独立回收。这种算法的好处是可以控制一次回收多少个小区间。
http://www.w-s-a.com/news/626700/

相关文章:

  • 公司汇报网站建设方案烟台seo网站推广
  • 文章网站哪里建设好找素材的网站
  • 怎么做自己的彩票网站公司建设网站价格
  • 国外比较好的设计网站网站后台无法上传图片
  • 帮别人做网站的公司是外包吗用户登录
  • 关于我们网站模板小莉帮忙郑州阳光男科医院
  • 上海门户网站怎么登录永州网站制作
  • 微信网站模版下载做销售的去哪个网站应聘
  • 好看的个人博客主页长安网站优化公司
  • 企业网站关站大型综合新闻门户网站织梦模板
  • 网站优化排名易下拉效率查企业网站
  • 网站建设湛江关于汽车的网站
  • 南宁模板建站多少钱企业黄页名单
  • 企业网站的建设一般要素有网站定制公司地址
  • 婚纱摄影网站设计案例四川省城乡建设厅官方网站
  • 怎么做海淘网站wordpress首页表单
  • 大连网站优化技术长沙高端网站建设服务
  • 郎创网站建设做的网站 v2ex
  • 广东网站建设教程江西城乡住房建设网站
  • 做ppt卖给网站wordpress insert
  • 文化传媒公司网站模板wordpress转typecho
  • 网站建设设计视频郑州 服装网站建设
  • 网站建设什么公司好织梦cms默认密码
  • 大型网站 空间网上商城官网入口
  • 成都全美网站建设江苏专业网站建设
  • 足球网站模板有帮忙做阿里巴巴网站的吗
  • 建设厅报名网站京东网站的建设与发展前景
  • 金寨县住房和城乡建设部网站网页作业怎么做一个网站
  • 做ppt模板网站有哪些内容wap是什么意思卡老师
  • 网站建设一定要域名吗网站后台关键词设置