当前位置: 首页 > news >正文

什么犁网站做淘宝门头搜外网 seo教程

什么犁网站做淘宝门头,搜外网 seo教程,wordpress一句话插件,步骤的英文禁忌搜索算法是一种现代启发式搜索方案#xff0c;主要用于解决组合优化问题。该算法由George F. Lugeral于1986年首次提出#xff0c;旨在增强局部搜索算法的性能#xff0c;避免其陷入局部最优解。禁忌搜索利用一个称为“禁忌表”的数据结构#xff0c;记住最近访问的解决…禁忌搜索算法是一种现代启发式搜索方案主要用于解决组合优化问题。该算法由George F. Lugeral于1986年首次提出旨在增强局部搜索算法的性能避免其陷入局部最优解。禁忌搜索利用一个称为“禁忌表”的数据结构记住最近访问的解决方案从而禁止在短期内回到这些解借此探索更广泛的解空间并寻求更优解。 ### 一、背景 在许多组合优化问题中比如旅行商问题、调度问题、背包问题等寻找最优解往往是非常复杂的。传统的启发式算法如爬山算法往往容易陷入局部最优解导致整体解的优化性能不足。禁忌搜索在此背景下应运而生目的在于通过记忆和策略来引导搜索过程从而跳出局部最优化的困境接近全局最优解。 ### 二、原理 禁忌搜索算法的核心思想是利用禁忌表记录近期的解在搜索过程中避免再次访问这些解。该算法可视为改进的局部搜索允许进行“非对称”的搜索即尽管某些解在短期内被禁止算法仍可以探索其他潜在的解。 #### 1. 解决方案表示 通常用一个向量或一个集合表示问题的解。例如在旅行商问题中可以用一个城市的排列来表示一个路线解。 #### 2. 邻域结构 一个解决方案的邻域是通过对当前解进行小的变更而形成的一组解决方案。邻域结构的设计非常重要它直接影响到搜索的效率和效果。 #### 3. 禁忌表 禁忌表是禁忌搜索的重要组成部分主要用于记录一定数量的“禁忌”解。它通常采用先进先出FIFO策略删除最早的纪录以保持大小恒定。禁忌表的长度是一个参数影响着算法的性能。 #### 4. 目标函数 目标函数用于评估每个解决方案的质量。禁忌搜索算法通过最大化或最小化目标函数来引导搜索过程。 ### 三、实现过程 禁忌搜索的实现过程一般包括以下几个步骤 #### 1. 初始化 - 选定初始解并计算其目标函数值。 - 初始化禁忌表为空。 - 设定禁忌表的大小和最大迭代次数。 #### 2. 主循环 在指定的迭代次数内执行以下步骤 - **邻域生成**根据当前解生成解的邻域。 - **评估邻域解**计算邻域中所有解的目标函数值并找出最优解。 - **禁忌检查**检查该邻域解是否在禁忌表中。如果是则判断是否是最优解如果不是则更新当前解为邻域最优解。 - **更新禁忌表**将当前解或某个特定的属性如交换的元素加入禁忌表确保在之后的搜索中不再回到该解。 - **记录最优解**如果当前解优于历史记录更新最优解。    #### 3. 终止条件 - 根据事先设定的终止条件如达到最大迭代次数或在一定时间内未找到新解来结束搜索。 #### 4. 输出结果 - 输出最优解及其目标函数值。 ### 四、流程示意图 开始 → 初始化 (初始解、目标函数、禁忌表) →   ↓ 主循环 (达到最大迭代次数)   ↙               ↘ 是                否   ↓                ↓ 输出结果       邻域生成 →                 评估邻域解 →                 禁忌检查 →                 更新禁忌表 →                 记录最优解 →                 返回主循环 ### 五、算法性能分析 禁忌搜索算法的性能常常取决于多个因素如禁忌表的大小、邻域结构的设计以及目标函数的计算复杂度。良好的邻域结构和适当的禁忌表大小能够在巨大的解空间中有效地引导搜索过程。此外禁忌搜索的多样性和灵活性使其可以与其他算法如遗传算法、模拟退火等结合形成混合算法。 ### 六、应用领域 禁忌搜索被广泛应用于各种领域包括但不限于 1. **旅行商问题**解决路径最优化。 2. **调度问题**如制造与任务调度。 3. **资源分配**最大化利益或最小化成本。 4. **图着色问题**解决图的最小着色问题。 5. **路径规划**自动驾驶与机器人导航等领域。 ### 七、结论 禁忌搜索算法是一种强大的优化工具能够有效地解决大量组合优化问题。通过使用禁忌表、邻域结构等机制它克服了传统局部搜索的局限性探索更广泛的解空间。禁忌搜索算法的灵活性及其与其他方法的结合能力使得其在实际应用中具有重要的价值。随着计算技术的发展禁忌搜索算法仍将继续在各类优化问题中发挥重要作用。 Python import numpy as np   class TabuSearch:   def __init__(self, objective_function, initial_solution, tabu_size, max_iterations):   self.objective_function objective_function   self.current_solution initial_solution   self.best_solution initial_solution   self.tabu_list []   self.tabu_size tabu_size   self.max_iterations max_iterations   def find_neighbors(self, solution):   neighbors []   # Example of generating neighbors by swapping two elements   for i in range(len(solution)):   for j in range(i 1, len(solution)):   neighbor solution.copy()   neighbor[i], neighbor[j] neighbor[j], neighbor[i]   neighbors.append(neighbor)   return neighbors   def run(self):   for _ in range(self.max_iterations):   neighbors self.find_neighbors(self.current_solution)   best_neighbor None   best_value float(inf)   for neighbor in neighbors:   if neighbor not in self.tabu_list:   neighbor_value self.objective_function(neighbor)   if neighbor_value best_value:   best_value neighbor_value   best_neighbor neighbor   if best_neighbor is not None:   self.current_solution best_neighbor   if self.objective_function(self.current_solution) self.objective_function(self.best_solution):   self.best_solution self.current_solution   self.tabu_list.append(self.current_solution)   if len(self.tabu_list) self.tabu_size:   self.tabu_list.pop(0)   return self.best_solution, self.objective_function(self.best_solution)   # Example usage   def objective_function(solution):   return sum(solution) # Minimize the sum for example   initial_solution [3, 1, 4, 1, 5]   tabu_search TabuSearch(objective_function, initial_solution, tabu_size5, max_iterations100)   best_solution, best_value tabu_search.run()   print(Best Solution:, best_solution)   print(Best Value:, best_value) MATLAB classdef TabuSearch   properties   objective_function   current_solution   best_solution   tabu_list   tabu_size   max_iterations   end   methods   function obj TabuSearch(objective_function, initial_solution, tabu_size, max_iterations)   obj.objective_function objective_function;   obj.current_solution initial_solution;   obj.best_solution initial_solution;   obj.tabu_list {};   obj.tabu_size tabu_size;   obj.max_iterations max_iterations;   end   function neighbors find_neighbors(obj, solution)   neighbors [];   n length(solution);   % Generate neighbors by swapping two elements   for i 1:n   for j i1:n   neighbor solution;   neighbor([i, j]) neighbor([j, i]);   neighbors [neighbors; neighbor];   end   end   end   function [best_solution, best_value] run(obj)   for iter 1:obj.max_iterations   neighbors obj.find_neighbors(obj.current_solution);   best_neighbor [];   best_value Inf;   for i 1:size(neighbors, 1)   neighbor neighbors(i, :);   if ~ismember(neighbor, obj.tabu_list, rows)   neighbor_value obj.objective_function(neighbor);   if neighbor_value best_value   best_value neighbor_value;   best_neighbor neighbor;   end   end   end   if ~isempty(best_neighbor)   obj.current_solution best_neighbor;   if obj.objective_function(obj.current_solution) obj.objective_function(obj.best_solution)   obj.best_solution obj.current_solution;   end   obj.tabu_list{end1} obj.current_solution; %#ok*AGROW   if length(obj.tabu_list) obj.tabu_size   obj.tabu_list(1) [];   end   end   end   best_solution obj.best_solution;   best_value obj.objective_function(best_solution);   end   end   end   % Example usage   objective_function (solution) sum(solution); % Minimize the sum for example   initial_solution [3, 1, 4, 1, 5];   tabu_search TabuSearch(objective_function, initial_solution, 5, 100);   [best_solution, best_value] tabu_search.run();   disp(Best Solution:);   disp(best_solution);   disp(Best Value:);   disp(best_value); 说明 邻域生成在 Python 和 MATLAB 示例中使用交换两个元素的方法生成邻域解。根据具体问题其他邻域生成策略也可以应用。 目标函数示例中使用的目标函数是求解数组元素的和。可以根据需要替换为其他目标函数。 禁忌列表用于存放最近访问过的解以避免将它们纳入后续搜索。 这两个实现提供了禁忌搜索的基本框架可以根据实际需求修改和扩充。具体的优化问题和目标函数可以自行设计。
http://www.w-s-a.com/news/137020/

相关文章:

  • 专业开发网站设计找人做网页需要多少钱
  • 手机购物网站 建站网站建设网站制作网站设计
  • 基于iview的网站开发模板小程序制作需要什么语言
  • 精美网站设计保定建行网站首页登录
  • 网站建设常见问题做网站保存什么格式最好
  • 营销型网站建设与网页设计网站建设 amp 找VX cp5173
  • 新网站该如何做网站优化呢儿童手工
  • 湖北现代城市建设集团网站搜索引擎优化的作用
  • 上海做网站吧开一家软件开发公司需要什么
  • 阿里巴巴网站建设改图片建设厅官方网站河南
  • 邓砚谷电子商务网站建设镇江网
  • 网站空间支持什么程序工作服款式
  • 网站单页品牌网站建设 蝌蚪5小
  • 怎么做外贸网站需注意哪些做电脑系统的网站
  • 网站建设介绍推广用语河南网站优化外包服务
  • 课程网站模板贵州省城乡与建设厅网站
  • 网站模板及源码谁家网站用户体验做的好
  • 做网站的技术要求搜索栏在wordpress菜单上位置
  • 如何给网站弄ftpwordpress怎么添加关键词描述
  • 成都工程建设信息网站金科网站建设
  • 传媒公司 网站开发厦门网站建设门户
  • 宿城区建设局网站做网站的绿色背景图
  • 网站空间托管合同 .doc网站开发团队 组建
  • 网站建设书本信息it运维服务
  • 四核网站建设设计网站流程
  • ui设计网站设计与网页制作视频教程wordpress插件漏洞利用
  • 网站建设公司排名前十做网站的最终目的
  • 选择网站开发公司的标准中国网站建设市场规模
  • 衣服网站建设策划书广州住房和城乡建设部网站
  • 微商城科技淄博网站建设优化seo