接口网站建设,网站更改备案信息在哪,上海企业微信网站制作,外贸网络营销方案RTX3060 FP64测试与猜想 一.小结二.查看FP64的峰值性能三.打满FP64、FP32的利用率,对比差异四.进一步证明pipe_fp64_cycles_active并不是2个fp64 core的metrics RTX3060 FP64测试与猜想
一.小结
RTX3060 compute capability为8.6,每个SM有2个FP64 core。每个cycle可输出2个fp… RTX3060 FP64测试与猜想 一.小结二.查看FP64的峰值性能三.打满FP64、FP32的利用率,对比差异四.进一步证明pipe_fp64_cycles_active并不是2个fp64 core的metrics RTX3060 FP64测试与猜想
一.小结
RTX3060 compute capability为8.6,每个SM有2个FP64 core。每个cycle可输出2个fp64的结果RTX3060 有4个subcore,这2个core怎么给4个sub_core分呢执行FP64 DADD指令时,MIO PQ利用率超20%(FADD指令不存在该现象),且fp64 pipe的利用率最多为84%每个smsp 执行一条DADD warp指令 pipe_fp64_cycles_active 增加16个cycle,4个smsp一起运行一条DADD warp指令仍是16个cycle猜测: smsp按 1DADD/cycle 交替发送给2个FP64 core,一个warp需要16个cycle(32inst/16cycle-2inst/cycle)如果4个sub core同时按这个速度发,则超过了FP64的处理能力(8inst/cycle 2inst/cycle),但pipe_fp64_cycles_active没有增加说明,在发射FP64指令之前会检测资源的可用性,如果不足,则不发射,pipe_fp64_cycles_active也就不会增加也就解释了4个sub core一起执行时,pipe_fp64_cycles_active.max还是16个cycle执行FP64指令时,4个subcore通过MIO共享FP64实际的执行单元
二.查看FP64的峰值性能
tee fp64_peak_sustained.cu-EOF
#include cuda_runtime.h
#include cuda.h
__global__ void fake_kernel(){}
int main(int argc,char *argv[])
{fake_kernel1, 1();cudaDeviceSynchronize();
}
EOF
/usr/local/cuda/bin/nvcc -stdc17 -archsm_86 -lineinfo -o fp64_peak_sustained fp64_peak_sustained.cu \-I /usr/local/cuda/include -L /usr/local/cuda/lib64 -lcuda
/usr/local/NVIDIA-Nsight-Compute/ncu --metrics \
sm__sass_thread_inst_executed_op_fp64_pred_on.avg.peak_sustained,\
sm__sass_thread_inst_executed_op_fp64_pred_on.sum.peak_sustained ./fp64_peak_sustained
输出
fake_kernel() (1, 1, 1)x(1, 1, 1), Context 1, Stream 7, Device 0, CC 8.6
Section: Command line profiler metrics
---------------------------------------------------------------- ----------- ------------
Metric Name Metric Unit Metric Value
---------------------------------------------------------------- ----------- ------------
sm__sass_thread_inst_executed_op_fp64_pred_on.avg.peak_sustained inst/cycle 2 #每个sm的峰值性能
sm__sass_thread_inst_executed_op_fp64_pred_on.sum.peak_sustained inst/cycle 56 #28个sm
---------------------------------------------------------------- ----------- ------------2 FP64 cores in devices of compute capability 8.6, 8.7 and 8.9问题:这2个core怎么给4个sub_core分呢?
三.打满FP64、FP32的利用率,对比差异
tee fp64_test.cu-EOF
#include iostream
#include cuda_runtime.h
#include iostream
#include vector
#include stdio.h
#include assert.h
#include cstdio
#include cuda.h__global__ void kernel_add_float(volatile float *input,volatile float *output)
{unsigned int tid threadIdx.x blockIdx.x * blockDim.x;float linput[tid];float routput[tid];for(int i0;i256;i){l-r;} input[tid]l;
}
__global__ void kernel_add_double(volatile double *input,volatile double *output)
{unsigned int tid threadIdx.x blockIdx.x * blockDim.x;double leftinput[tid];double rightoutput[tid];for(int i0;i256;i){leftright;} output[tid]left;
}
EOF/usr/local/cuda/bin/nvcc -stdc17 -dc -lineinfo -archsm_86 -ptx fp64_test.cu -o fp64_test.ptx
/usr/local/cuda/bin/nvcc -archsm_86 fp64_test.ptx -cubin -o fp64_test.cubin
/usr/local/cuda/bin/nvcc -archsm_86 fp64_test.cubin -fatbin -o fp64_test.fatbin
cat fp64_test.ptx
/usr/local/cuda/bin/cuobjdump --dump-sass fp64_test.fatbin# 删掉除DADD、FADD以外的指令
cuasm.py fp64_test.cubin fp64_test.cuasm
sed /MOV/d -i fp64_test.cuasm
sed /S2R/d -i fp64_test.cuasm
sed /ULDC/d -i fp64_test.cuasm
sed /IMAD/d -i fp64_test.cuasm
sed /LDG/d -i fp64_test.cuasm
sed /STG/d -i fp64_test.cuasm
sed /F2F/d -i fp64_test.cuasmcuasm.py fp64_test.cuasm
/usr/local/cuda/bin/nvcc -archsm_86 fp64_test.cubin -fatbin -o fp64_test.fatbin
/usr/local/cuda/bin/cuobjdump --dump-sass fp64_test.fatbin
/usr/local/cuda/bin/cuobjdump --dump-resource-usage fp64_test.fatbintee fp64_test_main.cpp-EOF
#include stdio.h
#include string.h
#include cuda_runtime.h
#include cuda.hint main(int argc,char *argv[])
{CUresult error;CUdevice cuDevice;cuInit(0);int deviceCount 0;error cuDeviceGetCount(deviceCount);error cuDeviceGet(cuDevice, 0);if(error!CUDA_SUCCESS){printf(Error happened in get device!\n);}CUcontext cuContext;error cuCtxCreate(cuContext, 0, cuDevice);if(error!CUDA_SUCCESS){printf(Error happened in create context!\n);}int block_count28*1000;int block_size32*4*4;int thread_sizeblock_count*block_size;int data_sizesizeof(double)*thread_size;double *output_ptrnullptr;double *input_ptrnullptr;int cudaStatus0;cudaStatus cudaMalloc((void**)input_ptr, data_size);cudaStatus cudaMalloc((void**)output_ptr, data_size);void *kernelParams[] {(void*)output_ptr, (void*)input_ptr};CUmodule module;CUfunction double_function;CUfunction float_function;const char* module_file fp64_test.fatbin;const char* double_kernel_name _Z17kernel_add_doublePVdS0_;const char* float_kernel_name _Z16kernel_add_floatPVfS0_;error cuModuleLoad(module, module_file);if(error!CUDA_SUCCESS){printf(Error happened in load moudle %d!\n,error);}error cuModuleGetFunction(double_function, module, double_kernel_name);if(error!CUDA_SUCCESS){printf(get double_function error!\n);}error cuModuleGetFunction(float_function, module, float_kernel_name);if(error!CUDA_SUCCESS){printf(get float_kernel_name error!\n);} cuLaunchKernel(double_function,block_count, 1, 1,block_size, 1, 1,0,0,kernelParams, 0);cuLaunchKernel(float_function,block_count, 1, 1,block_size, 1, 1,0,0,kernelParams, 0);cudaFree(output_ptr);cudaFree(input_ptr);cuModuleUnload(module);cuCtxDestroy(cuContext);return 0;
}
EOF
g fp64_test_main.cpp -o fp64_test_main -I /usr/local/cuda/include -L /usr/local/cuda/lib64 -lcudart -lcuda
/usr/local/NVIDIA-Nsight-Compute/ncu --metrics \
sm__inst_executed.avg.pct_of_peak_sustained_elapsed,\
smsp__inst_issued.sum,\
sm__issue_active.avg.pct_of_peak_sustained_elapsed,\
sm__pipe_fma_cycles_active.avg.pct_of_peak_sustained_elapsed,\
sm__pipe_fmaheavy_cycles_active.avg.pct_of_peak_sustained_elapsed,\
sm__inst_executed_pipe_cbu_pred_on_any.avg.pct_of_peak_sustained_elapsed,\
sm__mio_inst_issued.avg.pct_of_peak_sustained_elapsed,\
sm__mio_pq_read_cycles_active.avg.pct_of_peak_sustained_elapsed,\
sm__mio_pq_write_cycles_active.avg.pct_of_peak_sustained_elapsed,\
sm__mio_pq_write_cycles_active_pipe_lsu.avg.pct_of_peak_sustained_elapsed,\
sm__mio_pq_write_cycles_active_pipe_tex.avg.pct_of_peak_sustained_elapsed,\
sm__mioc_inst_issued.avg.pct_of_peak_sustained_elapsed,\
sm__mio_inst_issued.avg.pct_of_peak_sustained_elapsed,\
sm__pipe_fp64_cycles_active.avg.pct_of_peak_sustained_elapsed ./fp64_test_main输出
kernel_add_double(volatile double *, volatile double *) (28000, 1, 1)x(512, 1, 1), Context 1, Stream 7, Device 0, CC 8.6
Section: Command line profiler metrics
------------------------------------------------------------------------- ----------- ------------
Metric Name Metric Unit Metric Value
------------------------------------------------------------------------- ----------- ------------
sm__inst_executed.avg.pct_of_peak_sustained_elapsed % 1.32
sm__inst_executed_pipe_cbu_pred_on_any.avg.pct_of_peak_sustained_elapsed % 0.02
sm__issue_active.avg.pct_of_peak_sustained_elapsed % 1.32
sm__mio_inst_issued.avg.pct_of_peak_sustained_elapsed % 3.51
sm__mio_pq_read_cycles_active.avg.pct_of_peak_sustained_elapsed % 0
sm__mio_pq_write_cycles_active.avg.pct_of_peak_sustained_elapsed % 21.05
sm__mio_pq_write_cycles_active_pipe_lsu.avg.pct_of_peak_sustained_elapsed % 0
sm__mio_pq_write_cycles_active_pipe_tex.avg.pct_of_peak_sustained_elapsed % 21.05 # of cycles where register operands from the register file werewritten to MIO PQ, for the tex pipe
sm__mioc_inst_issued.avg.pct_of_peak_sustained_elapsed % 1.32
sm__pipe_fma_cycles_active.avg.pct_of_peak_sustained_elapsed % 0
sm__pipe_fmaheavy_cycles_active.avg.pct_of_peak_sustained_elapsed % 0
sm__pipe_fp64_cycles_active.avg.pct_of_peak_sustained_elapsed % 84.21 #利用率打不满
smsp__inst_issued.sum inst 115,136,000 #跟fp32相同的指令条数
------------------------------------------------------------------------- ----------- ------------kernel_add_float(volatile float *, volatile float *) (28000, 1, 1)x(512, 1, 1), Context 1, Stream 7, Device 0, CC 8.6
Section: Command line profiler metrics
------------------------------------------------------------------------- ----------- ------------
Metric Name Metric Unit Metric Value
------------------------------------------------------------------------- ----------- ------------
sm__inst_executed.avg.pct_of_peak_sustained_elapsed % 99.76
sm__inst_executed_pipe_cbu_pred_on_any.avg.pct_of_peak_sustained_elapsed % 1.55
sm__issue_active.avg.pct_of_peak_sustained_elapsed % 99.76
sm__mio_inst_issued.avg.pct_of_peak_sustained_elapsed % 0
sm__mio_pq_read_cycles_active.avg.pct_of_peak_sustained_elapsed % 0
sm__mio_pq_write_cycles_active.avg.pct_of_peak_sustained_elapsed % 0
sm__mio_pq_write_cycles_active_pipe_lsu.avg.pct_of_peak_sustained_elapsed % 0
sm__mio_pq_write_cycles_active_pipe_tex.avg.pct_of_peak_sustained_elapsed % 0
sm__mioc_inst_issued.avg.pct_of_peak_sustained_elapsed % 0.39
sm__pipe_fma_cycles_active.avg.pct_of_peak_sustained_elapsed % 99.37
sm__pipe_fmaheavy_cycles_active.avg.pct_of_peak_sustained_elapsed % 99.37
sm__pipe_fp64_cycles_active.avg.pct_of_peak_sustained_elapsed % 0
smsp__inst_issued.sum inst 115,136,000
------------------------------------------------------------------------- ----------- ------------*猜测,sm__pipe_fp64_cycles_active并不是那2个FP64 core的metrics,而是smsp里通往fp64 core的接口模块的活动cycle数 *4个subcore里的fp64接口模块,连接到2个fp64 core,并且经过了mio模块.因此,无法打满fp64的利用率
四.进一步证明pipe_fp64_cycles_active并不是2个fp64 core的metrics
tee fp64_test.cu-EOF
#include iostream
#include cuda_runtime.h
#include iostream
#include vector
#include stdio.h
#include assert.h
#include cstdio
#include cuda.h__global__ void kernel_add_double(volatile double *input,volatile double *output)
{unsigned int tid threadIdx.x blockIdx.x * blockDim.x;double leftinput[tid];double rightoutput[tid];for(int i0;i1;i){leftright;} output[tid]left;
}
EOF/usr/local/cuda/bin/nvcc -stdc17 -dc -lineinfo -archsm_86 -ptx fp64_test.cu -o fp64_test.ptx
/usr/local/cuda/bin/nvcc -archsm_86 fp64_test.ptx -cubin -o fp64_test.cubin
/usr/local/cuda/bin/nvcc -archsm_86 fp64_test.cubin -fatbin -o fp64_test.fatbin
cat fp64_test.ptx
/usr/local/cuda/bin/cuobjdump --dump-sass fp64_test.fatbincuasm.py fp64_test.cubin fp64_test.cuasm
sed /MOV/d -i fp64_test.cuasm
sed /S2R/d -i fp64_test.cuasm
sed /ULDC/d -i fp64_test.cuasm
sed /IMAD/d -i fp64_test.cuasm
sed /LDG/d -i fp64_test.cuasm
sed /STG/d -i fp64_test.cuasm
sed /F2F/d -i fp64_test.cuasmcuasm.py fp64_test.cuasm
/usr/local/cuda/bin/nvcc -archsm_86 fp64_test.cubin -fatbin -o fp64_test.fatbin
/usr/local/cuda/bin/cuobjdump --dump-sass fp64_test.fatbin
/usr/local/cuda/bin/cuobjdump --dump-resource-usage fp64_test.fatbintee fp64_test_main.cpp-EOF
#include stdio.h
#include string.h
#include cuda_runtime.h
#include cuda.hint main(int argc,char *argv[])
{CUresult error;CUdevice cuDevice;cuInit(0);int deviceCount 0;error cuDeviceGetCount(deviceCount);error cuDeviceGet(cuDevice, 0);if(error!CUDA_SUCCESS){printf(Error happened in get device!\n);}CUcontext cuContext;error cuCtxCreate(cuContext, 0, cuDevice);if(error!CUDA_SUCCESS){printf(Error happened in create context!\n);}int block_count1;int block_size32*4*4;int thread_sizeblock_count*block_size;int data_sizesizeof(double)*thread_size;double *output_ptrnullptr;double *input_ptrnullptr;int cudaStatus0;cudaStatus cudaMalloc((void**)input_ptr, data_size);cudaStatus cudaMalloc((void**)output_ptr, data_size);void *kernelParams[] {(void*)output_ptr, (void*)input_ptr};CUmodule module;CUfunction double_function;const char* module_file fp64_test.fatbin;const char* double_kernel_name _Z17kernel_add_doublePVdS0_;error cuModuleLoad(module, module_file);if(error!CUDA_SUCCESS){printf(Error happened in load moudle %d!\n,error);}error cuModuleGetFunction(double_function, module, double_kernel_name);if(error!CUDA_SUCCESS){printf(get float_kernel_name error!\n);} cuLaunchKernel(double_function,block_count, 1, 1,8, 1, 1,0,0,kernelParams, 0);cuLaunchKernel(double_function,block_count, 1, 1,16, 1, 1,0,0,kernelParams, 0);cuLaunchKernel(double_function,block_count, 1, 1,32, 1, 1,0,0,kernelParams, 0);cuLaunchKernel(double_function,block_count, 1, 1,32*2, 1, 1,0,0,kernelParams, 0);cuLaunchKernel(double_function,block_count, 1, 1,32*4, 1, 1,0,0,kernelParams, 0);cuLaunchKernel(double_function,block_count, 1, 1,32*5, 1, 1,0,0,kernelParams, 0);cuLaunchKernel(double_function,block_count, 1, 1,32*4*8, 1, 1,0,0,kernelParams, 0);cudaFree(output_ptr);cudaFree(input_ptr);cuModuleUnload(module);cuCtxDestroy(cuContext);return 0;
}
EOF
g fp64_test_main.cpp -o fp64_test_main -I /usr/local/cuda/include -L /usr/local/cuda/lib64 -lcudart -lcuda/usr/local/NVIDIA-Nsight-Compute/ncu --metrics smsp__pipe_fp64_cycles_active ./fp64_test_main输出
kernel_add_double(volatile double *, volatile double *) (1, 1, 1)x(8, 1, 1), Context 1, Stream 7, Device 0, CC 8.6
Section: Command line profiler metrics
--------------------------------- ----------- ------------
Metric Name Metric Unit Metric Value
--------------------------------- ----------- ------------
smsp__pipe_fp64_cycles_active.avg cycle 0.14
smsp__pipe_fp64_cycles_active.max cycle 16
smsp__pipe_fp64_cycles_active.min cycle 0
smsp__pipe_fp64_cycles_active.sum cycle 16
--------------------------------- ----------- ------------kernel_add_double(volatile double *, volatile double *) (1, 1, 1)x(16, 1, 1), Context 1, Stream 7, Device 0, CC 8.6
Section: Command line profiler metrics
--------------------------------- ----------- ------------
Metric Name Metric Unit Metric Value
--------------------------------- ----------- ------------
smsp__pipe_fp64_cycles_active.avg cycle 0.14
smsp__pipe_fp64_cycles_active.max cycle 16 #不足一个warp跟一个warp 的pipe_fp64_cycles_active一样,说明存在无效计算
smsp__pipe_fp64_cycles_active.min cycle 0
smsp__pipe_fp64_cycles_active.sum cycle 16
--------------------------------- ----------- ------------kernel_add_double(volatile double *, volatile double *) (1, 1, 1)x(32, 1, 1), Context 1, Stream 7, Device 0, CC 8.6
Section: Command line profiler metrics
--------------------------------- ----------- ------------
Metric Name Metric Unit Metric Value
--------------------------------- ----------- ------------
smsp__pipe_fp64_cycles_active.avg cycle 0.14
smsp__pipe_fp64_cycles_active.max cycle 16
smsp__pipe_fp64_cycles_active.min cycle 0
smsp__pipe_fp64_cycles_active.sum cycle 16
--------------------------------- ----------- ------------kernel_add_double(volatile double *, volatile double *) (1, 1, 1)x(64, 1, 1), Context 1, Stream 7, Device 0, CC 8.6
Section: Command line profiler metrics
--------------------------------- ----------- ------------
Metric Name Metric Unit Metric Value
--------------------------------- ----------- ------------
smsp__pipe_fp64_cycles_active.avg cycle 0.29
smsp__pipe_fp64_cycles_active.max cycle 16
smsp__pipe_fp64_cycles_active.min cycle 0
smsp__pipe_fp64_cycles_active.sum cycle 32
--------------------------------- ----------- ------------kernel_add_double(volatile double *, volatile double *) (1, 1, 1)x(128, 1, 1), Context 1, Stream 7, Device 0, CC 8.6
Section: Command line profiler metrics
--------------------------------- ----------- ------------
Metric Name Metric Unit Metric Value
--------------------------------- ----------- ------------
smsp__pipe_fp64_cycles_active.avg cycle 0.57
smsp__pipe_fp64_cycles_active.max cycle 16
smsp__pipe_fp64_cycles_active.min cycle 0
smsp__pipe_fp64_cycles_active.sum cycle 64
--------------------------------- ----------- ------------kernel_add_double(volatile double *, volatile double *) (1, 1, 1)x(160, 1, 1), Context 1, Stream 7, Device 0, CC 8.6
Section: Command line profiler metrics
--------------------------------- ----------- ------------
Metric Name Metric Unit Metric Value
--------------------------------- ----------- ------------
smsp__pipe_fp64_cycles_active.avg cycle 0.71
smsp__pipe_fp64_cycles_active.max cycle 32
smsp__pipe_fp64_cycles_active.min cycle 0
smsp__pipe_fp64_cycles_active.sum cycle 80
--------------------------------- ----------- ------------kernel_add_double(volatile double *, volatile double *) (1, 1, 1)x(1024, 1, 1), Context 1, Stream 7, Device 0, CC 8.6
Section: Command line profiler metrics
--------------------------------- ----------- ------------
Metric Name Metric Unit Metric Value
--------------------------------- ----------- ------------
smsp__pipe_fp64_cycles_active.avg cycle 4.57
smsp__pipe_fp64_cycles_active.max cycle 128
smsp__pipe_fp64_cycles_active.min cycle 0
smsp__pipe_fp64_cycles_active.sum cycle 512 #每个smsp 执行一个warp的fp64需要16个pipe_fp64_cycles_active
--------------------------------- ----------- ------------如果是2个fp64 cores的metrics,不会出现这样的现象