深圳住房和建设局网站融悦居,建设一个外贸网站需要多少钱,织梦配置手机网站,wordpress被恶意登录Tensorflow 2.12 电影推荐系统之排序模型 学习笔记导入相关模块准备数据加载数据数据预处理获取词汇表构建模型定义评分排序模型定义损失函数以及模型评估指标定义完整的评分排序模型训练和评估创建排序模型实例缓存数据训练评估预测导出和加载模型结尾学习笔记 Tensorflow 2.1… Tensorflow 2.12 电影推荐系统之排序模型 学习笔记导入相关模块准备数据加载数据数据预处理获取词汇表 构建模型定义评分排序模型定义损失函数以及模型评估指标定义完整的评分排序模型 训练和评估创建排序模型实例缓存数据训练评估 预测导出和加载模型 结尾 学习笔记 Tensorflow 2.12 智能电影推荐系统搭建学习笔记~ Tensorflow是谷歌开源的机器学习框架,可以帮助我们轻松地构建和部署机器学习模型。这里记录学习使用tensorflow-recommenders来构建一个电影推荐排序模型。 版本:python3.1.0、tensorflow2.12.0~
导入相关模块
# 导入os模块,主要提供系统相关的函数,如文件操作等,这里主要用于保存模型
import os
# pretty print,适合打印复杂的数据结构对象
import pprint
# 用于创建临时文件和目录
import tempfile
# 字典以及文本处理模块
from typing import Dict, Text
# 一个用于进行科学计算的Python库,它提供了高性能的多维数组对象(ndarray)以及用于处理这些数组的各种函数和工具
import numpy as np
# 导入TensorFlow
import tensorflow as tf
import tensorflow_recommenders as tfrs
# TensorFlow示例数据加载模块
import tensorflow_datasets as tfds准备数据
加载数据
Movielens数据集是明尼苏达大学的GroupLens研究小组的经典数据集。它包含了一组用户对电影的评分,是推荐系统研究的重要数据集。
# 加载用户观看电影评分数据集(评分可以认为是显示反馈,通过评分可以知道用户对电影的喜爱程度,从而进行有效的推荐)
ratings = tfds.load("movielens/100k-ratings", split="train")数据预处理
# 去掉没用到的特征,保留用户ID,观看的电影标题以及用户对该电影的评分
# 数据:{'bucketized_user_age': 45.0,'movie_genres': array([7], dtype=int64),'movie_id': b'357','movie_title': b"One Flew Over the Cuckoo's Nest (1975)",'raw_user_age': 46.0,'timestamp': 879024327,'user_gender': True,'user_id': b'138','user_occupation_label': 4,'user_occupation_text': b'doctor','user_rating': 4.0,'user_zip_code': b'53211'}
ratings = ratings.map(lambda x: {"movie_title": x["movie_title"],"user_id": x["user_id"],"user_rating": x["user_rating"]
})
# 设置随机数种子
tf.random.set_seed(42)
# 打乱数据
shuffled = ratings.shuffle(100_000, seed=42, reshuffle_each_iteration=False)
# 切分训练数据以及测试数据
train = shuffled.take(80_000)
test = shuffled.skip(80_000).take(20_000)获取词汇表
获取用户Id以及电影标题的词汇表,后续以词汇表将原始特征值映射到连续范围内的整数,方便训练时在嵌入表中查找相应的嵌入向量。
# 获取数据集中的电影标题
movie_titles = ratings.batch(1_000_000).map(lambda x: x["movie_title"])
# 获取数据集中的用户ID
user_ids = ratings.batch(1_000_000).map(lambda x: x["user_id"])