印度人通过什么网站做国际贸易,wordpress google 蜘蛛 频率,网站国际互联网备案号,Win10卸载wordpress8.5、特征与直观理解I
一、神经网络的学习特性
神经网络通过学习可以得出自身的一系列特征。相对于普通的逻辑回归#xff0c;在使用原始特征 x1,x2,...,xn 时受到一定的限制。虽然可以使用一些二项式项来组合这些特征#xff0c;但仍然受到原始特征的限制。在神经网…8.5、特征与直观理解I
一、神经网络的学习特性
神经网络通过学习可以得出自身的一系列特征。相对于普通的逻辑回归在使用原始特征 x1,x2,...,xn 时受到一定的限制。虽然可以使用一些二项式项来组合这些特征但仍然受到原始特征的限制。在神经网络中原始特征仅作为输入层存在。以一个三层的神经网络为例输出层所做的预测利用的是第二层的特征而不是输入层中的原始特征。因此可以将第二层中的特征看作是神经网络通过学习后自动生成的一系列新特征用于更好地预测输出变量。
二、神经元与逻辑运算
单层神经元即没有中间层的情况可以被用来表示逻辑运算如逻辑与(AND)和逻辑或(OR)。通过一个简单的例子来说明逻辑与(AND)的表示。
逻辑与(AND)的神经网络表示 逻辑或(OR)的神经网络表示
逻辑或(OR)的表示与逻辑与(AND)类似区别在于权重不同。通过选择合适的权重可以构建表示逻辑或的神经网络。 8.6、样本与值观理解II
一、二元逻辑运算符与神经元表示
当输入特征为布尔值0 或 1时可以使用单一的激活层来表示二元逻辑运算符。关键在于选择不同的权重从而实现不同的逻辑运算。下面是几个例子
1. 逻辑与AND的神经元表示
考虑一个神经元其三个权重分别为 Θ0−30,Θ120,Θ220。这个神经元的输出可以被视为等同于逻辑与AND运算。
2. 逻辑或OR的神经元表示
另一个神经元其三个权重分别为 Θ0−10,Θ120,Θ220可以被视为等同于逻辑或OR运算。 3. 逻辑非NOT的神经元表示
一个仅含有两个权重的神经元权重分别为 10 和−20可以被视为等同于逻辑非NOT运算。
二、组合神经元实现复杂运算
通过组合这些神经元可以实现更为复杂的逻辑运算。例如想要实现 XNOR 运算符当输入的两个值均为 1 或均为 0 时输出 1否则输出 0可以按照以下步骤
构造一个能表示(NOT x1) AND (NOT x2) 部分的神经元。将表示逻辑与AND的神经元和表示(NOT x1) AND (NOT x2) 的神经元以及表示逻辑或OR的神经元进行组合。
通过这样的方法得到了一个能实现 XNOR 运算符功能的神经网络。 参考资料
[中英字幕]吴恩达机器学习系列课程
黄海广博士 - 吴恩达机器学习个人笔记