自己有服务器怎么建设网站,青岛网站设计软件,网站开发网页上传和网页发布,wordpress多个下载地址项目介绍
整体的目录如下所示#xff1a; 上述的项目结构中出了model是必须的外#xff0c;其他的都可以根据训练的代码参数传入进行调整#xff0c;有些不需要一定存在data train.pkl:对原始训练语料进行tokenize之后的文件,存储一个list对象#xff0c;list的每条数据表…项目介绍
整体的目录如下所示 上述的项目结构中出了model是必须的外其他的都可以根据训练的代码参数传入进行调整有些不需要一定存在data train.pkl:对原始训练语料进行tokenize之后的文件,存储一个list对象list的每条数据表示一个多轮对话表示一条训练数据 model:存放对话生成的模型 - config.json:模型参数的配置文件 - pytorch_model.bin:模型文件vocab vocab.txt:字典文件。默认的字典大小为13317若需要使用自定义字典需要将confog.json文件中的vocab_size字段设为相应的大小。 sample:存放人机闲聊生成的历史聊天记录train.py:训练代码interact.py:人机交互代码preprocess.py:数据预处理代码
项目的整体运行流程
第一步数据模块 根据后面的数据集地址介绍进行数据集的下载里面有各个地方的数据集来源以及数据合并的代码第二步将得到的数据通过preprocess.py文件进行训练数据处理得到train.pkl文件得到后再整个项目目录下创建data文件夹并将得到的train.pkl文件移动到data文件夹下面第三步去huggingface网站上面下载gpt2预训练模型下的文件具体需要下载的文件如下所示 第四步运行train.py文件训练得到再收集的数据集上面的微调模型第五步通过chatbot.py对模型进行人机交互和推理
数据集地址
https://github.com/codemayq/chinese-chatbot-corpus 安装上面的readme运行就可以得到相应的数据集然后再运行上面的preprocess.py就可以得到相关的训练数据集train.pkl
训练代码train.py import argparse
import math
import time
import torch
import torch.nn.functional as F
import torch.optim as optim
import logging
from datetime import datetime
import os
from torch.utils.data import Dataset, DataLoader
from os.path import join, exists
from torch.nn import CrossEntropyLoss
from tqdm import tqdm
from torch.nn import DataParallel
import transformers
import pickle
import sys
from pytorchtools import EarlyStopping
from sklearn.model_selection import train_test_split
from data_parallel import BalancedDataParallel
from transformers import GPT2TokenizerFast, GPT2LMHeadModel, GPT2Config
from transformers import BertTokenizerFast
import pandas as pd
import torch.nn.utils.rnn as rnn_utils
import numpy as np
from dataset import MyDatasetdef set_args():parser argparse.ArgumentParser()parser.add_argument(--device, default3, typestr, requiredFalse, help设置使用哪些显卡)parser.add_argument(--no_cuda, actionstore_true, help不使用GPU进行训练)parser.add_argument(--vocab_path, defaultvocab/vocab.txt, typestr, requiredFalse,help词表路径)parser.add_argument(--model_config, defaultconfig/config.json, typestr, requiredFalse,help设置模型参数)parser.add_argument(--train_path, defaultdata/train.pkl, typestr, requiredFalse, help训练集路径)parser.add_argument(--max_len, default150, typeint, requiredFalse, help训练时输入数据的最大长度)parser.add_argument(--log_path, defaultdata/train.log, typestr, requiredFalse, help训练日志存放位置)parser.add_argument(--log, defaultTrue, help是否记录日志)parser.add_argument(--ignore_index, default-100, typeint, requiredFalse, help对于ignore_index的label token不计算梯度)# parser.add_argument(--input_len, default200, typeint, requiredFalse, help输入的长度)parser.add_argument(--epochs, default20, typeint, requiredFalse, help训练的最大轮次)parser.add_argument(--batch_size, default64, typeint, requiredFalse, help训练的batch size)parser.add_argument(--gpu0_bsz, default10, typeint, requiredFalse, help0号卡的batch size)parser.add_argument(--lr, default2.6e-5, typefloat, requiredFalse, help学习率)parser.add_argument(--eps, default1.0e-09, typefloat, requiredFalse, help衰减率)parser.add_argument(--log_step, default1, typeint, requiredFalse, help多少步汇报一次loss)parser.add_argument(--gradient_accumulation_steps, default4, typeint, requiredFalse, help梯度积累)parser.add_argument(--max_grad_norm, default2.0, typefloat, requiredFalse)parser.add_argument(--save_model_path, defaultmodel_new, typestr, requiredFalse,help模型输出路径)parser.add_argument(--pretrained_model, default./pretrained_model, typestr, requiredFalse,help预训练的模型的路径)# parser.add_argument(--seed, typeint, defaultNone, help设置种子用于生成随机数以使得训练的结果是确定的)parser.add_argument(--num_workers, typeint, default0, helpdataloader加载数据时使用的线程数量)parser.add_argument(--patience, typeint, default0, help用于early stopping,设为0时,不进行early stopping.early stop得到的模型的生成效果不一定会更好。)parser.add_argument(--warmup_steps, typeint, default4000, helpwarm up步数)# parser.add_argument(--label_smoothing, defaultTrue, actionstore_true, help是否进行标签平滑)parser.add_argument(--val_num, typeint, default8000, help验证集大小)args parser.parse_args()return argsdef create_logger(args):将日志输出到日志文件和控制台logger logging.getLogger(__name__)logger.setLevel(logging.INFO)formatter logging.Formatter(%(asctime)s - %(levelname)s - %(message)s)# 创建一个handler用于写入日志文件file_handler logging.FileHandler(filenameargs.log_path)file_handler.setFormatter(formatter)file_handler.setLevel(logging.INFO)logger.addHandler(file_handler)# 创建一个handler用于将日志输出到控制台console logging.StreamHandler()console.setLevel(logging.DEBUG)console.setFormatter(formatter)logger.addHandler(console)return loggerdef collate_fn(batch):input_ids rnn_utils.pad_sequence(batch, batch_firstTrue, padding_value0)labels rnn_utils.pad_sequence(batch, batch_firstTrue, padding_value-100)return input_ids, labels# def padding_batch(data_list, pad_id):
#
# 使用pad_id将data_list的每条数据填充至data_list中最长的长度
# :param data_list:
# :param pad_id:
# :return:
#
# # 统计data_list中的最大长度
# max_len 0
# for data in data_list:
# max_len max_len if max_len len(data) else len(data)
#
# # 对数据进行padding
# new_data_list []
# for data in data_list:
# new_data data [pad_id] * (max_len - len(data))
# new_data_list.append(new_data)
# return new_data_listdef load_dataset(logger, args):加载训练集和验证集logger.info(loading training dataset and validating dataset)train_path args.train_pathwith open(train_path, rb) as f:input_list pickle.load(f)# 划分训练集与验证集val_num args.val_numinput_list_train input_list[val_num:]input_list_val input_list[:val_num]# test# input_list_train input_list_train[:24]# input_list_val input_list_val[:24]train_dataset MyDataset(input_list_train, args.max_len)val_dataset MyDataset(input_list_val, args.max_len)return train_dataset, val_datasetdef train_epoch(model, train_dataloader, optimizer, scheduler, logger,epoch, args):model.train()device args.device# pad_id args.pad_id# sep_id args.sep_idignore_index args.ignore_indexepoch_start_time datetime.now()total_loss 0 # 记录下整个epoch的loss的总和# epoch_correct_num:每个epoch中,output预测正确的word的数量# epoch_total_num: 每个epoch中,output预测的word的总数量epoch_correct_num, epoch_total_num 0, 0for batch_idx, (input_ids, labels) in enumerate(train_dataloader):# print(fthe input_ids is: {input_ids}, and the labels is : {labels} !!!)# 捕获cuda out of memory exceptiontry:input_ids input_ids.to(device)labels labels.to(device)outputs model.forward(input_ids, labelslabels)logits outputs.logitsloss outputs.lossloss loss.mean()# 统计该batch的预测token的正确数与总数batch_correct_num, batch_total_num calculate_acc(logits, labels, ignore_indexignore_index)# 统计该epoch的预测token的正确数与总数epoch_correct_num batch_correct_numepoch_total_num batch_total_num# 计算该batch的accuracybatch_acc batch_correct_num / batch_total_numtotal_loss loss.item()if args.gradient_accumulation_steps 1:loss loss / args.gradient_accumulation_stepsloss.backward()# 梯度裁剪torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)# 进行一定step的梯度累计之后更新参数if (batch_idx 1) % args.gradient_accumulation_steps 0:# 更新参数optimizer.step()# 更新学习率scheduler.step()# 清空梯度信息optimizer.zero_grad()if (batch_idx 1) % args.log_step 0:logger.info(batch {} of epoch {}, loss {}, batch_acc {}, lr {}.format(batch_idx 1, epoch 1, loss.item() * args.gradient_accumulation_steps, batch_acc, scheduler.get_lr()))del input_ids, outputsexcept RuntimeError as exception:if out of memory in str(exception):logger.info(WARNING: ran out of memory)if hasattr(torch.cuda, empty_cache):torch.cuda.empty_cache()else:logger.info(str(exception))raise exception# 记录当前epoch的平均loss与accuracyepoch_mean_loss total_loss / len(train_dataloader)epoch_mean_acc epoch_correct_num / epoch_total_numlogger.info(epoch {}: loss {}, predict_acc {}.format(epoch 1, epoch_mean_loss, epoch_mean_acc))# save modellogger.info(saving model for epoch {}.format(epoch 1))model_path join(args.save_model_path, epoch{}.format(epoch 1))if not os.path.exists(model_path):os.mkdir(model_path)model_to_save model.module if hasattr(model, module) else modelmodel_to_save.save_pretrained(model_path)logger.info(epoch {} finished.format(epoch 1))epoch_finish_time datetime.now()logger.info(time for one epoch: {}.format(epoch_finish_time - epoch_start_time))return epoch_mean_lossdef validate_epoch(model, validate_dataloader, logger, epoch, args):logger.info(start validating)model.eval()device args.device# pad_id args.pad_id# sep_id args.sep_idignore_index args.ignore_indexepoch_start_time datetime.now()total_loss 0# 捕获cuda out of memory exceptiontry:with torch.no_grad():for batch_idx, (input_ids, labels) in enumerate(validate_dataloader):input_ids input_ids.to(device)labels labels.to(device)outputs model.forward(input_ids, labelslabels)logits outputs.logitsloss outputs.lossloss loss.mean()total_loss loss.item()del input_ids, outputs# 记录当前epoch的平均lossepoch_mean_loss total_loss / len(validate_dataloader)logger.info(validate epoch {}: loss {}.format(epoch1, epoch_mean_loss))epoch_finish_time datetime.now()logger.info(time for validating one epoch: {}.format(epoch_finish_time - epoch_start_time))return epoch_mean_lossexcept RuntimeError as exception:if out of memory in str(exception):logger.info(WARNING: ran out of memory)if hasattr(torch.cuda, empty_cache):torch.cuda.empty_cache()else:logger.info(str(exception))raise exceptiondef train(model, logger, train_dataset, validate_dataset, args):train_dataloader DataLoader(train_dataset, batch_sizeargs.batch_size, shuffleTrue, num_workersargs.num_workers, collate_fncollate_fn,drop_lastTrue)validate_dataloader DataLoader(validate_dataset, batch_sizeargs.batch_size, shuffleTrue,num_workersargs.num_workers, collate_fncollate_fn, drop_lastTrue)early_stopping EarlyStopping(args.patience, verboseTrue, save_pathargs.save_model_path)t_total len(train_dataloader) // args.gradient_accumulation_steps * args.epochsoptimizer transformers.AdamW(model.parameters(), lrargs.lr, epsargs.eps)# scheduler transformers.WarmupLinearSchedule(optimizer, warmup_stepsargs.warmup_steps, t_totalt_total)scheduler transformers.get_linear_schedule_with_warmup(optimizer, num_warmup_stepsargs.warmup_steps, num_training_stepst_total)logger.info(starting training)# 用于记录每个epoch训练和验证的losstrain_losses, validate_losses [], []# 记录验证集的最小lossbest_val_loss 10000# 开始训练for epoch in range(args.epochs):# train #train_loss train_epoch(modelmodel, train_dataloadertrain_dataloader,optimizeroptimizer, schedulerscheduler,loggerlogger, epochepoch, argsargs)train_losses.append(train_loss)# validate #validate_loss validate_epoch(modelmodel, validate_dataloadervalidate_dataloader,loggerlogger, epochepoch, argsargs)validate_losses.append(validate_loss)# 保存当前困惑度最低的模型困惑度低模型的生成效果不一定会越好if validate_loss best_val_loss:best_val_loss validate_losslogger.info(saving current best model for epoch {}.format(epoch 1))model_path join(args.save_model_path, min_ppl_model.format(epoch 1))if not os.path.exists(model_path):os.mkdir(model_path)model_to_save model.module if hasattr(model, module) else modelmodel_to_save.save_pretrained(model_path)# 如果patience0,则不进行early stoppingif args.patience 0:continueearly_stopping(validate_loss, model)if early_stopping.early_stop:logger.info(Early stopping)breaklogger.info(training finished)logger.info(train_losses:{}.format(train_losses))logger.info(validate_losses:{}.format(validate_losses))def caculate_loss(logit, target, pad_idx, smoothingTrue):if smoothing:logit logit[..., :-1, :].contiguous().view(-1, logit.size(2))target target[..., 1:].contiguous().view(-1)eps 0.1n_class logit.size(-1)one_hot torch.zeros_like(logit).scatter(1, target.view(-1, 1), 1)one_hot one_hot * (1 - eps) (1 - one_hot) * eps / (n_class - 1)log_prb F.log_softmax(logit, dim1)non_pad_mask target.ne(pad_idx)loss -(one_hot * log_prb).sum(dim1)loss loss.masked_select(non_pad_mask).mean() # average laterelse:# loss F.cross_entropy(predict_logit, target, ignore_indexpad_idx)logit logit[..., :-1, :].contiguous().view(-1, logit.size(-1))labels target[..., 1:].contiguous().view(-1)loss F.cross_entropy(logit, labels, ignore_indexpad_idx)return lossdef calculate_acc(logit, labels, ignore_index-100):logit logit[..., :-1, :].contiguous().view(-1, logit.size(-1))labels labels[..., 1:].contiguous().view(-1)_, logit logit.max(dim-1) # 对于每条数据返回最大的index# 进行非运算返回一个tensor若labels的第i个位置为pad_id则置为0否则为1non_pad_mask labels.ne(ignore_index)n_correct logit.eq(labels).masked_select(non_pad_mask).sum().item()n_word non_pad_mask.sum().item()return n_correct, n_worddef main():# 初始化参数args set_args()# 设置使用哪些显卡进行训练os.environ[CUDA_VISIBLE_DEVICES] args.deviceargs.cuda not args.no_cudaif args.batch_size 2048 and args.warmup_steps 4000:print([Warning] The warmup steps may be not enough.\n \(sz_b, warmup) (2048, 4000) is the official setting.\n \Using smaller batch w/o longer warmup may cause \the warmup stage ends with only little data trained.)# 创建日志对象logger create_logger(args)# 当用户使用GPU,并且GPU可用时args.cuda torch.cuda.is_available() and not args.no_cudadevice cuda:0 if args.cuda else cpuargs.device devicelogger.info(using device:{}.format(device))# 初始化tokenizertokenizer BertTokenizerFast(vocab_fileargs.vocab_path, sep_token[SEP], pad_token[PAD], cls_token[CLS])args.sep_id tokenizer.sep_token_idargs.pad_id tokenizer.pad_token_idargs.cls_id tokenizer.cls_token_id# 创建模型的输出目录if not os.path.exists(args.save_model_path):os.mkdir(args.save_model_path)# 创建模型if args.pretrained_model: # 加载预训练模型model GPT2LMHeadModel.from_pretrained(args.pretrained_model)else: # 初始化模型model_config GPT2Config.from_json_file(args.model_config)model GPT2LMHeadModel(configmodel_config)model model.to(device)logger.info(model config:\n{}.format(model.config.to_json_string()))assert model.config.vocab_size tokenizer.vocab_size# 并行训练模型if args.cuda and torch.cuda.device_count() 1:model DataParallel(model).cuda()# model BalancedDataParallel(args.gpu0_bsz, model, dim0).cuda()logger.info(use GPU {} to train.format(args.device))# 计算模型参数数量num_parameters 0parameters model.parameters()for parameter in parameters:num_parameters parameter.numel()logger.info(number of model parameters: {}.format(num_parameters))# 记录参数设置logger.info(args:{}.format(args))# 加载训练集和验证集# Loading Dataset #train_dataset, validate_dataset load_dataset(logger, args)train(model, logger, train_dataset, validate_dataset, args)if __name__ __main__:main()dataset.py文件 from torch.utils.data import Dataset
import torch
class MyDataset(Dataset):def __init__(self, input_list, max_len):self.input_list input_listself.max_len max_lendef __getitem__(self, index):input_ids self.input_list[index]input_ids input_ids[:self.max_len]input_ids torch.tensor(input_ids, dtypetorch.long)return input_idsdef __len__(self):return len(self.input_list)训练数据处理代码preprocess.py from tokenizers import BertWordPieceTokenizer
from transformers import BertTokenizer
from transformers import BertTokenizerFast
import argparse
import pandas as pd
import pickle
from tqdm import tqdm
from transformers import GPT2TokenizerFast, GPT2LMHeadModel
import logging
import numpy as npdef create_logger(log_path):将日志输出到日志文件和控制台logger logging.getLogger(__name__)logger.setLevel(logging.INFO)formatter logging.Formatter(%(asctime)s - %(levelname)s - %(message)s)# 创建一个handler用于写入日志文件file_handler logging.FileHandler(filenamelog_path)file_handler.setFormatter(formatter)file_handler.setLevel(logging.INFO)logger.addHandler(file_handler)# 创建一个handler用于将日志输出到控制台console logging.StreamHandler()console.setLevel(logging.DEBUG)console.setFormatter(formatter)logger.addHandler(console)return loggerdef preprocess():对原始语料进行tokenize将每段对话处理成如下形式[CLS]utterance1[SEP]utterance2[SEP]utterance3[SEP]# 设置参数parser argparse.ArgumentParser()parser.add_argument(--vocab_path, defaultvocab/vocab.txt, typestr, requiredFalse,help词表路径)parser.add_argument(--log_path, defaultdata/preprocess.log, typestr, requiredFalse, help训练日志存放位置)parser.add_argument(--train_path, default50w_qa_data, typestr, requiredFalse, help训练日志存放位置)parser.add_argument(--save_path, defaultdata/train.pkl, typestr, requiredFalse, helptokenize的训练数据集)args parser.parse_args()# 初始化日志对象logger create_logger(args.log_path)# 初始化tokenizertokenizer BertTokenizerFast(vocab_fileargs.vocab_path, sep_token[SEP], pad_token[PAD], cls_token[CLS])sep_id tokenizer.sep_token_idcls_id tokenizer.cls_token_idlogger.info(preprocessing data,data path:{}, save path:{}.format(args.train_path, args.save_path))# 读取训练数据集with open(args.train_path, rb) as f:data f.read().decode(utf-8)# 需要区分linux和windows环境下的换行符if \r\n in data:train_data data.split(\r\n\r\n)else:train_data data.split(\n)logger.info(there are {} dialogue in dataset.format(len(train_data)))# 开始进行tokenize# 保存所有的对话数据,每条数据的格式为[CLS]utterance1[SEP]utterance2[SEP]utterance3[SEP]dialogue_len [] # 记录所有对话tokenize之后的长度用于统计中位数与均值dialogue_list []with open(args.save_path, w, encodingutf-8) as f:for index, dialogue in enumerate(tqdm(train_data)):if \r\n in data:utterances dialogue.split(\r\n)else:utterances dialogue.split(\t)input_ids [cls_id] # 每个dialogue以[CLS]开头for utterance in utterances:input_ids tokenizer.encode(utterance, add_special_tokensFalse)input_ids.append(sep_id) # 每个utterance之后添加[SEP]表示utterance结束dialogue_len.append(len(input_ids))dialogue_list.append(input_ids)# len_mean np.mean(dialogue_len)# len_median np.median(dialogue_len)# len_max np.max(dialogue_len)with open(args.save_path, wb) as f:pickle.dump(dialogue_list, f)# logger.info(finish preprocessing data,the result is stored in {}.format(args.save_path))# logger.info(mean of dialogue len:{},median of dialogue len:{},max len:{}.format(len_mean, len_median, len_max))if __name__ __main__:preprocess()