当前位置: 首页 > news >正文

佛山营销网站建设推广wp博客网站怎么做

佛山营销网站建设推广,wp博客网站怎么做,网站内部链接,手机网站搭建平台文章目录 前言理论篇:为什么需要 Double DQN?代码实现篇:构建一个 Double DQN 智能体2.1 项目设置与辅助函数2.2 环境 (Environment)2.3 DQN 的核心组件2.3.1 Replay Buffer (经验回放池)2.3.2 Q-Network (Q网络)2.3.3 The Double DQN Agent (Double DQN 智能体)训练与结果3… 文章目录 前言理论篇:为什么需要 Double DQN?代码实现篇:构建一个 Double DQN 智能体2.1 项目设置与辅助函数2.2 环境 (Environment)2.3 DQN 的核心组件2.3.1 Replay Buffer (经验回放池)2.3.2 Q-Network (Q网络)2.3.3 The Double DQN Agent (Double DQN 智能体) 训练与结果3.1 训练主循环3.2 超参数设置与执行3.3 结果分析 总结 前言 欢迎来到“从代码学习深度强化学习”系列!在强化学习(RL)的世界里,Deep Q-Network (DQN) 算法无疑是一个里程碑,它巧妙地将深度学习的强大感知能力与Q-Learning的决策能力相结合,解决了许多之前无法攻克的复杂问题。 然而,经典的DQN算法并非完美无瑕。它存在一个众所周知的问题——Q值过高估计 (Overestimation)。这个问题会导致智能体的学习过程不稳定,甚至无法收敛到最优策略。为了解决这一挑战,研究者们提出了Double DQN,一个对原始DQN的优雅而高效的改进。 本篇博客旨在带领大家深入理解Double DQN的核心思想,并通过一个完整的、带有详细注释的PyTorch代码实例,从零开始构建、训练并评估一个Double DQN智能体。我们将以经典的Pendulum-v1环境为例,一步步揭开Double DQN如何通过解耦“动作选择”与“价值评估”来缓解过高估计问题,最终实现更稳定、更高效的学习。 无论您是RL的初学者,还是希望深化对DQN家族算法理解的实践者,相信通过本文的理论讲解和代码剖析,您都能对Double DQN有一个更透彻的认识。让我们开始吧! 完整代码:下载链接 理论篇:为什么需要 Double DQN? 在深入代码之前,我们首先需要理解Double DQN所要解决的核心问题。普通的DQN算法在更新Q值时,通常会系统性地高估动作的价值,这个问题在动作空间较大的任务中尤为严重。 让我们通过下面这张图文并茂的理论讲解来一探究竟。 普通DQN算法通常会导致对Q值的过高估计 (overestimation)。传统DQN优化的TD误差目标为: 其中 max ⁡ a ′ Q ω − ( s ′ , a ′ ) \max_{a^{\prime}}Q_{\omega^{-}}\left(s^{\prime},a^{\prime}\right) maxa′​Qω−​(s′,a′)由目标网络 (参数为ω⁻) 计算得出,我们还可以将其写成如下形式: 换句话说,max操作实际上可以被拆解为两部分:首先选取状态s’下的最优动作 a ∗ = arg ⁡ max ⁡ a ′ Q ω − ( s ′ , a ′ ) a^*=\arg\max_{a^{\prime}}Q_{\omega^-}\left(s^{\prime},a^{\prime}\right) a∗=argmaxa′​Qω−​(s′,a′),接着计算该动作对应的价值 Q ω − ( s ′ , a ∗ ) Q_{\omega^-}\left(s^{\prime},a^*\right) Qω−​(s′,a∗)。当这两部分采用同一套Q网络进行计算时,每次得到的都是神经网络当前估算的所有动作价值中的最大值。 问题在于,神经网络的估算值本身在某些时候会产生正向或负向的误差。在DQN的更新方式下,神经网络会正向误差累积。因为max操作会倾向于选择那些被“偶然”高估了价值的动作。因此,当我们用DQN的更新公式进行更新时,用于计算目标值的max Q本身就可能被高估了。同理,我们拿这个被高估的值来作为更新目标来更新上一步的值时,同样会过高估计,这样的误差将会逐步累积。对于动作空间较大的任务,DQN中的过高估计问题会非常严重,造成DQN无法有效工作。 为了解决这一问题,Double DQN算法提出利用两个独立训练的神经网络估算 max ⁡ a ′ Q ∗ ( s ′ , a ′ ) \max_{a^{\prime}}Q_*(s^{\prime},a^{\prime}) maxa′​Q∗​(s′,a′)。具体做法是将原有的 max ⁡ a ′ Q ω − ( s ′ , a ′ ) \max_{a^{\prime}}Q_{\omega^{-}}\left(s^{\prime},a^{\prime}\right) maxa′​Qω−​(s′,a′)更改为 Q ω − ( s ′ , arg ⁡ max ⁡ a ′ Q ω ( s ′ , a ′ ) ) Q_{\omega^-}\left(s^{\prime},\arg\max_{a^{\prime}}Q_\omega\left(s^{\prime},a^{\prime}\right)\right) Qω−​(s′,argmaxa′​Qω​(s′,a′))。 这个公式的核心思想是解耦(Decoupling): 动作选择 (Action Selection): 利用主网络(参数为ω)的输出来选取价值最大的动作,即 arg ⁡ max ⁡ a ′ Q ω ( s ′ , a ′ ) \arg\max_{a^{\prime}}Q_\omega\left(s^{\prime},a^{\prime}\right) argmaxa′​Qω​(s
http://www.w-s-a.com/news/176605/

相关文章:

  • 福建建设执业中心网站沧州网络推广外包公司
  • 做网站怎么改关键词营销网站建设818gx
  • 广撒网网站怎么进行网络营销
  • 中职计算机网站建设教学计划电商网站如何避免客户信息泄露
  • 惠州微网站建设外贸进出口代理公司
  • 网站建设最常见的问题建设银行网站机构
  • 网站集群建设相关的招标南通seo网站建设费用
  • 网络培训的网站建设能够做二维码网站
  • 网站类游戏网站开发wordpress 文章首标点
  • 徐州网站建设熊掌号免费推广网站入口2020
  • 网站建设有前途长春高铁站
  • 做网站网课阿里云域名查询系统
  • saas建站平台有哪些简述网站建设基本流程答案
  • 个人怎么做网站网站浏览思路
  • 网站建设里的知识长沙网络营销公司
  • 网站建设与维护大作业pc网站转换成微网站
  • php网站开发经典教材东莞网站开发
  • 教育培训手机网站模板下载跨境电商培训哪家最好
  • 网站开发淄博网站被降权会发生什么影响吗
  • 网站开发常用的语言东城手机网站制作
  • 微小店网站建设平台手机优化加速有什么用
  • 沈阳酒店企业网站制作公司竞价网站怎么做seo
  • 中山企业网站多少钱学网站建设的好处
  • 做官网网站哪家公司好jianux wordpress
  • 插件素材网站新站seo优化快速上排名
  • 网站注销主体填写原因asp响应式h5网站源码下载
  • 电商类网站模板下载济南市建设网官网
  • 万户网络做网站如何采集器wordpress
  • 襄阳网站建设企业查看 wordpress 插件
  • 网站地址申请京东联盟怎么做网站