松岗做网站哪家便宜,网站设计就业培训,太原注册公司流程,网络营销相关理论有哪些我们需要在现有的代码基础上增加网络搜索功能#xff0c;并在大模型无法提供满意答案时调用网络搜索。以下是完整的代码和文件结构说明#xff0c;我们创建一个完整的项目结构#xff0c;包括多个文件和目录。这个项目将包含以下部分#xff1a;
主文件 (main.py)#xf…我们需要在现有的代码基础上增加网络搜索功能并在大模型无法提供满意答案时调用网络搜索。以下是完整的代码和文件结构说明我们创建一个完整的项目结构包括多个文件和目录。这个项目将包含以下部分
主文件 (main.py)包含GUI界面和模型加载、训练、评估等功能。 网络请求模块 (web_search.py)用于从互联网获取信息。 日志配置文件 (logging.conf)用于配置日志记录。 模型文件 (xihua_model.pth)训练好的模型权重文件。 数据文件 (train_data.jsonl, test_data.jsonl)训练和测试数据文件。 项目结构包括上述文件和目录。 项目结构
project_root/
├── data/
│ ├── train_data.jsonl
│ └── test_data.jsonl
├── logs/
│ └── (log files will be generated here)
├── models/
│ └── xihua_model.pth
├── main.py
├── web_search.py
└── logging.conf文件内容 main.py
import os
import json
import jsonlines
import torch
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from transformers import BertModel, BertTokenizer
import tkinter as tk
from tkinter import filedialog, messagebox, ttk
import logging
from difflib import SequenceMatcher
from datetime import datetime
from web_search import search_web# 获取项目根目录
PROJECT_ROOT os.path.dirname(os.path.abspath(__file__))# 配置日志
LOGS_DIR os.path.join(PROJECT_ROOT, logs)
os.makedirs(LOGS_DIR, exist_okTrue)def setup_logging():log_file os.path.join(LOGS_DIR, datetime.now().strftime(%Y-%m-%d_%H-%M-%S_羲和.txt))logging.basicConfig(levellogging.INFO,format%(asctime)s - %(levelname)s - %(message)s,handlers[logging.FileHandler(log_file),logging.StreamHandler()])setup_logging()# 数据集类
class XihuaDataset(Dataset):def __init__(self, file_path, tokenizer, max_length128):self.tokenizer tokenizerself.max_length max_lengthself.data self.load_data(file_path)def load_data(self, file_path):data []if file_path.endswith(.jsonl):with jsonlines.open(file_path) as reader:for i, item in enumerate(reader):try:data.append(item)except jsonlines.jsonlines.InvalidLineError as e:logging.warning(f跳过无效行 {i 1}: {e})elif file_path.endswith(.json):with open(file_path, r) as f:try:data json.load(f)except json.JSONDecodeError as e:logging.warning(f跳过无效文件 {file_path}: {e})return datadef __len__(self):return len(self.data)def __getitem__(self, idx):item self.data[idx]question item[question]human_answer item[human_answers][0]chatgpt_answer item[chatgpt_answers][0]try:inputs self.tokenizer(question, return_tensorspt, paddingmax_length, truncationTrue, max_lengthself.max_length)human_inputs self.tokenizer(human_answer, return_tensorspt, paddingmax_length, truncationTrue, max_lengthself.max_length)chatgpt_inputs self.tokenizer(chatgpt_answer, return_tensorspt, paddingmax_length, truncationTrue, max_lengthself.max_length)except Exception as e:logging.warning(f跳过无效项 {idx}: {e})return self.__getitem__((idx 1) % len(self.data))return {input_ids: inputs[input_ids].squeeze(),attention_mask: inputs[attention_mask].squeeze(),human_input_ids: human_inputs[input_ids].squeeze(),human_attention_mask: human_inputs[attention_mask].squeeze(),chatgpt_input_ids: chatgpt_inputs[input_ids].squeeze(),chatgpt_attention_mask: chatgpt_inputs[attention_mask].squeeze(),human_answer: human_answer,chatgpt_answer: chatgpt_answer}# 获取数据加载器
def get_data_loader(file_path, tokenizer, batch_size8, max_length128):dataset XihuaDataset(file_path, tokenizer, max_length)return DataLoader(dataset, batch_sizebatch_size, shuffleTrue)# 模型定义
class XihuaModel(torch.nn.Module):def __init__(self, pretrained_model_nameF:/models/bert-base-chinese):super(XihuaModel, self).__init__()self.bert BertModel.from_pretrained(pretrained_model_name)self.classifier torch.nn.Linear(self.bert.config.hidden_size, 1)def forward(self, input_ids, attention_mask):outputs self.bert(input_idsinput_ids, attention_maskattention_mask)pooled_output outputs.pooler_outputlogits self.classifier(pooled_output)return logits# 训练函数
def train(model, data_loader, optimizer, criterion, device, progress_varNone):model.train()total_loss 0.0num_batches len(data_loader)for batch_idx, batch in enumerate(data_loader):try:input_ids batch[input_ids].to(device)attention_mask batch[attention_mask].to(device)human_input_ids batch[human_input_ids].to(device)human_attention_mask batch[human_attention_mask].to(device)chatgpt_input_ids batch[chatgpt_input_ids].to(device)chatgpt_attention_mask batch[chatgpt_attention_mask].to(device)optimizer.zero_grad()human_logits model(human_input_ids, human_attention_mask)chatgpt_logits model(chatgpt_input_ids, chatgpt_attention_mask)human_labels torch.ones(human_logits.size(0), 1).to(device)chatgpt_labels torch.zeros(chatgpt_logits.size(0), 1).to(device)loss criterion(human_logits, human_labels) criterion(chatgpt_logits, chatgpt_labels)loss.backward()optimizer.step()total_loss loss.item()if progress_var:progress_var.set((batch_idx 1) / num_batches * 100)except Exception as e:logging.warning(f跳过无效批次: {e})return total_loss / len(data_loader)# 评估函数
def evaluate(model, data_loader, device):model.eval()correct_predictions 0total_predictions 0with torch.no_grad():for batch in data_loader:input_ids batch[input_ids].to(device)attention_mask batch[attention_mask].to(device)human_input_ids batch[human_input_ids].to(device)human_attention_mask batch[human_attention_mask].to(device)chatgpt_input_ids batch[chatgpt_input_ids].to(device)chatgpt_attention_mask batch[chatgpt_attention_mask].to(device)human_logits model(human_input_ids, human_attention_mask)chatgpt_logits model(chatgpt_input_ids, chatgpt_attention_mask)human_labels torch.ones(human_logits.size(0), 1).to(device)chatgpt_labels torch.zeros(chatgpt_logits.size(0), 1).to(device)human_preds (torch.sigmoid(human_logits) 0.5).float()chatgpt_preds (torch.sigmoid(chatgpt_logits) 0.5).float()correct_predictions (human_preds human_labels).sum().item()correct_predictions (chatgpt_preds chatgpt_labels).sum().item()total_predictions human_labels.size(0) chatgpt_labels.size(0)accuracy correct_predictions / total_predictionsreturn accuracy# 主训练函数
def main_train(retrainFalse):device torch.device(cuda if torch.cuda.is_available() else cpu)logging.info(fUsing device: {device})tokenizer BertTokenizer.from_pretrained(F:/models/bert-base-chinese)model XihuaModel(pretrained_model_nameF:/models/bert-base-chinese).to(device)if retrain:model_path os.path.join(PROJECT_ROOT, models/xihua_model.pth)if os.path.exists(model_path):model.load_state_dict(torch.load(model_path, map_locationdevice))logging.info(加载现有模型)else:logging.info(没有找到现有模型将使用预训练模型)optimizer optim.Adam(model.parameters(), lr1e-5)criterion torch.nn.BCEWithLogitsLoss()train_data_loader get_data_loader(os.path.join(PROJECT_ROOT, data/train_data.jsonl), tokenizer, batch_size8, max_length128)num_epochs 30for epoch in range(num_epochs):train_loss train(model, train_data_loader, optimizer, criterion, device)logging.info(fEpoch [{epoch1}/{num_epochs}], Loss: {train_loss:.8f})torch.save(model.state_dict(), os.path.join(PROJECT_ROOT, models/xihua_model.pth))logging.info(模型训练完成并保存)# GUI界面
class XihuaChatbotGUI:def __init__(self, root):self.root rootself.root.title(羲和聊天机器人)self.tokenizer BertTokenizer.from_pretrained(F:/models/bert-base-chinese)self.device torch.device(cuda if torch.cuda.is_available() else cpu)self.model XihuaModel(pretrained_model_nameF:/models/bert-base-chinese).to(self.device)self.load_model()self.model.eval()# 加载训练数据集以便在获取答案时使用self.data self.load_data(os.path.join(PROJECT_ROOT, data/train_data.jsonl))# 历史记录self.history []self.create_widgets()def create_widgets(self):# 顶部框架top_frame tk.Frame(self.root)top_frame.pack(pady10)self.question_label tk.Label(top_frame, text问题:, font(Arial, 12))self.question_label.grid(row0, column0, padx10)self.question_entry tk.Entry(top_frame, width50, font(Arial, 12))self.question_entry.grid(row0, column1, padx10)self.answer_button tk.Button(top_frame, text获取回答, commandself.get_answer, font(Arial, 12))self.answer_button.grid(row0, column2, padx10)# 中部框架middle_frame tk.Frame(self.root)middle_frame.pack(pady10)self.answer_label tk.Label(middle_frame, text回答:, font(Arial, 12))self.answer_label.grid(row0, column0, padx10)self.answer_text tk.Text(middle_frame, height10, width70, font(Arial, 12))self.answer_text.grid(row1, column0, padx10)# 底部框架bottom_frame tk.Frame(self.root)bottom_frame.pack(pady10)self.correct_button tk.Button(bottom_frame, text准确, commandself.mark_correct, font(Arial, 12))self.correct_button.grid(row0, column0, padx10)self.incorrect_button tk.Button(bottom_frame, text不准确, commandself.mark_incorrect, font(Arial, 12))self.incorrect_button.grid(row0, column1, padx10)self.train_button tk.Button(bottom_frame, text训练模型, commandself.train_model, font(Arial, 12))self.train_button.grid(row0, column2, padx10)self.retrain_button tk.Button(bottom_frame, text重新训练模型, commandlambda: self.train_model(retrainTrue), font(Arial, 12))self.retrain_button.grid(row0, column3, padx10)self.progress_var tk.DoubleVar()self.progress_bar ttk.Progressbar(bottom_frame, variableself.progress_var, maximum100, length200)self.progress_bar.grid(row1, column0, columnspan4, pady10)self.log_text tk.Text(bottom_frame, height10, width70, font(Arial, 12))self.log_text.grid(row2, column0, columnspan4, pady10)self.evaluate_button tk.Button(bottom_frame, text评估模型, commandself.evaluate_model, font(Arial, 12))self.evaluate_button.grid(row3, column0, padx10, pady10)self.history_button tk.Button(bottom_frame, text查看历史记录, commandself.view_history, font(Arial, 12))self.history_button.grid(row3, column1, padx10, pady10)self.save_history_button tk.Button(bottom_frame, text保存历史记录, commandself.save_history, font(Arial, 12))self.save_history_button.grid(row3, column2, padx10, pady10)def get_answer(self):question self.question_entry.get()if not question:messagebox.showwarning(输入错误, 请输入问题)returninputs self.tokenizer(question, return_tensorspt, paddingmax_length, truncationTrue, max_length128)with torch.no_grad():input_ids inputs[input_ids].to(self.device)attention_mask inputs[attention_mask].to(self.device)logits self.model(input_ids, attention_mask)if logits.item() 0:answer_type 羲和回答else:answer_type 零回答specific_answer self.get_specific_answer(question, answer_type)if specific_answer 这个我也不清楚你问问零吧:specific_answer search_web(question)self.answer_text.delete(1.0, tk.END)self.answer_text.insert(tk.END, f{answer_type}\n{specific_answer})# 添加到历史记录self.history.append({question: question,answer_type: answer_type,specific_answer: specific_answer,accuracy: None # 初始状态为未评价})def get_specific_answer(self, question, answer_type):# 使用模糊匹配查找最相似的问题best_match Nonebest_ratio 0.0for item in self.data:ratio SequenceMatcher(None, question, item[question]).ratio()if ratio best_ratio:best_ratio ratiobest_match itemif best_match:if answer_type 羲和回答:return best_match[human_answers][0]else:return best_match[chatgpt_answers][0]return 这个我也不清楚你问问零吧def load_data(self, file_path):data []if file_path.endswith(.jsonl):with jsonlines.open(file_path) as reader:for i, item in enumerate(reader):try:data.append(item)except jsonlines.jsonlines.InvalidLineError as e:logging.warning(f跳过无效行 {i 1}: {e})elif file_path.endswith(.json):with open(file_path, r) as f:try:data json.load(f)except json.JSONDecodeError as e:logging.warning(f跳过无效文件 {file_path}: {e})return datadef load_model(self):model_path os.path.join(PROJECT_ROOT, models/xihua_model.pth)if os.path.exists(model_path):self.model.load_state_dict(torch.load(model_path, map_locationself.device))logging.info(加载现有模型)else:logging.info(没有找到现有模型将使用预训练模型)def train_model(self, retrainFalse):file_path filedialog.askopenfilename(filetypes[(JSONL files, *.jsonl), (JSON files, *.json)])if not file_path:messagebox.showwarning(文件选择错误, 请选择一个有效的数据文件)returntry:dataset XihuaDataset(file_path, self.tokenizer)data_loader DataLoader(dataset, batch_size8, shuffleTrue)# 加载已训练的模型权重if retrain:self.model.load_state_dict(torch.load(os.path.join(PROJECT_ROOT, models/xihua_model.pth), map_locationself.device))self.model.to(self.device)self.model.train()optimizer torch.optim.Adam(self.model.parameters(), lr1e-5)criterion torch.nn.BCEWithLogitsLoss()num_epochs 30for epoch in range(num_epochs):train_loss train(self.model, data_loader, optimizer, criterion, self.device, self.progress_var)logging.info(fEpoch [{epoch1}/{num_epochs}], Loss: {train_loss:.4f})self.log_text.insert(tk.END, fEpoch [{epoch1}/{num_epochs}], Loss: {train_loss:.4f}\n)self.log_text.see(tk.END)torch.save(self.model.state_dict(), os.path.join(PROJECT_ROOT, models/xihua_model.pth))logging.info(模型训练完成并保存)self.log_text.insert(tk.END, 模型训练完成并保存\n)self.log_text.see(tk.END)messagebox.showinfo(训练完成, 模型训练完成并保存)except Exception as e:logging.error(f模型训练失败: {e})self.log_text.insert(tk.END, f模型训练失败: {e}\n)self.log_text.see(tk.END)messagebox.showerror(训练失败, f模型训练失败: {e})def evaluate_model(self):test_data_loader get_data_loader(os.path.join(PROJECT_ROOT, data/test_data.jsonl), self.tokenizer, batch_size8, max_length128)accuracy evaluate(self.model, test_data_loader, self.device)logging.info(f模型评估准确率: {accuracy:.4f})self.log_text.insert(tk.END, f模型评估准确率: {accuracy:.4f}\n)self.log_text.see(tk.END)messagebox.showinfo(评估结果, f模型评估准确率: {accuracy:.4f})def mark_correct(self):if self.history:self.history[-1][accuracy] Truemessagebox.showinfo(评价成功, 您认为这次回答是准确的)def mark_incorrect(self):if self.history:self.history[-1][accuracy] Falsemessagebox.showinfo(评价成功, 您认为这次回答是不准确的)def view_history(self):history_window tk.Toplevel(self.root)history_window.title(历史记录)history_text tk.Text(history_window, height20, width80, font(Arial, 12))history_text.pack(padx10, pady10)for entry in self.history:history_text.insert(tk.END, f问题: {entry[question]}\n)history_text.insert(tk.END, f回答类型: {entry[answer_type]}\n)history_text.insert(tk.END, f具体回答: {entry[specific_answer]}\n)if entry[accuracy] is None:history_text.insert(tk.END, 评价: 未评价\n)elif entry[accuracy]:history_text.insert(tk.END, 评价: 准确\n)else:history_text.insert(tk.END, 评价: 不准确\n)history_text.insert(tk.END, - * 50 \n)def save_history(self):file_path filedialog.asksaveasfilename(defaultextension.json, filetypes[(JSON files, *.json)])if not file_path:returnwith open(file_path, w) as f:json.dump(self.history, f, ensure_asciiFalse, indent4)messagebox.showinfo(保存成功, 历史记录已保存到文件)# 主函数
if __name__ __main__:# 启动GUIroot tk.Tk()app XihuaChatbotGUI(root)root.mainloop()web_search.py
import requests
from bs4 import BeautifulSoupdef search_web(query):url fhttps://www.baidu.com/s?wd{query}headers {User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3}response requests.get(url, headersheaders)soup BeautifulSoup(response.text, html.parser)results []for result in soup.find_all(div, class_c-container):title result.find(h3).get_text()snippet result.find(div, class_c-abstract)if snippet:snippet snippet.get_text()results.append(f{title}\n{snippet}\n)if results:return \n.join(results[:3]) # 返回前三个结果else:return 没有找到相关信息logging.conf
[loggers]
keysroot[handlers]
keysconsoleHandler,fileHandler[formatters]
keyssimpleFormatter[logger_root]
levelINFO
handlersconsoleHandler,fileHandler[handler_consoleHandler]
classStreamHandler
levelINFO
formattersimpleFormatter
args(sys.stdout,)[handler_fileHandler]
classFileHandler
levelINFO
formattersimpleFormatter
args(logs/羲和.log, a)[formatter_simpleFormatter]
format%(asctime)s - %(levelname)s - %(message)s
datefmt%Y-%m-%d %H:%M:%S目录结构
project_root/
├── data/
│ ├── train_data.jsonl
│ └── test_data.jsonl
├── logs/
│ └── (log files will be generated here)
├── models/
│ └── xihua_model.pth
├── main.py
├── web_search.py
└── logging.conf说明 main.py主文件包含GUI界面和模型加载、训练、评估等功能。 web_search.py用于从百度搜索信息的模块。 logging.conf日志配置文件用于配置日志记录。 data/存放训练和测试数据文件。 logs/存放日志文件。 models/存放训练好的模型权重文件。 通过以上结构和代码你可以实现一个具有GUI界面的聊天机器人该机器人可以在本地使用训练好的模型回答问题如果模型中没有相关内容则会联网搜索并返回相关信息。