当前位置: 首页 > news >正文

南昌有哪些做网站的公司做化学科普网站的目的

南昌有哪些做网站的公司,做化学科普网站的目的,对网站的赏析,促销策划特征提取是数据分析和机器学习中的基本概念#xff0c;是将原始数据转换为更适合分析或建模的格式过程中的关键步骤。特征#xff0c;也称为变量或属性#xff0c;是我们用来进行预测、对对象进行分类或从数据中获取见解的数据点的特定特征或属性。 1.AlexNet paper#…特征提取是数据分析和机器学习中的基本概念是将原始数据转换为更适合分析或建模的格式过程中的关键步骤。特征也称为变量或属性是我们用来进行预测、对对象进行分类或从数据中获取见解的数据点的特定特征或属性。 1.AlexNet paperhttps://dl.acm.org/doi/pdf/10.1145/3065386 作者 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton 显然该网络是按照作者名字命名的,但是现在这个bacbone比较老了性能欠佳 框架 整体结构主要由五个卷积层、三个全连接层构成中间穿插着最大池化、ReLU、Dropout 使用ReLu非线性激活函数 code_Pytorch class AlexNet(nn.Module):Neural network model consisting of layers propsed by AlexNet paper.def __init__(self, num_classes1000):Define and allocate layers for this neural net.Args:num_classes (int): number of classes to predict with this modelsuper().__init__()# input size should be : (b x 3 x 227 x 227)# The image in the original paper states that width and height are 224 pixels, but# the dimensions after first convolution layer do not lead to 55 x 55.self.net nn.Sequential(nn.Conv2d(in_channels3, out_channels96, kernel_size11, stride4), # (b x 96 x 55 x 55)nn.ReLU(),nn.LocalResponseNorm(size5, alpha0.0001, beta0.75, k2), # section 3.3nn.MaxPool2d(kernel_size3, stride2), # (b x 96 x 27 x 27)nn.Conv2d(96, 256, 5, padding2), # (b x 256 x 27 x 27)nn.ReLU(),nn.LocalResponseNorm(size5, alpha0.0001, beta0.75, k2),nn.MaxPool2d(kernel_size3, stride2), # (b x 256 x 13 x 13)nn.Conv2d(256, 384, 3, padding1), # (b x 384 x 13 x 13)nn.ReLU(),nn.Conv2d(384, 384, 3, padding1), # (b x 384 x 13 x 13)nn.ReLU(),nn.Conv2d(384, 256, 3, padding1), # (b x 256 x 13 x 13)nn.ReLU(),nn.MaxPool2d(kernel_size3, stride2), # (b x 256 x 6 x 6))# classifier is just a name for linear layersself.classifier nn.Sequential(nn.Dropout(p0.5, inplaceTrue),nn.Linear(in_features(256 * 6 * 6), out_features4096),nn.ReLU(),nn.Dropout(p0.5, inplaceTrue),nn.Linear(in_features4096, out_features4096),nn.ReLU(),nn.Linear(in_features4096, out_featuresnum_classes),)self.init_bias() # initialize biasdef init_bias(self):for layer in self.net:if isinstance(layer, nn.Conv2d):nn.init.normal_(layer.weight, mean0, std0.01)nn.init.constant_(layer.bias, 0)# original paper 1 for Conv2d layers 2nd, 4th, and 5th conv layersnn.init.constant_(self.net[4].bias, 1)nn.init.constant_(self.net[10].bias, 1)nn.init.constant_(self.net[12].bias, 1)def forward(self, x):Pass the input through the net.Args:x (Tensor): input tensorReturns:output (Tensor): output tensorx self.net(x)x x.view(-1, 256 * 6 * 6) # reduce the dimensions for linear layer inputreturn self.classifier(x) 2.VGG paper:https://arxiv.org/abs/1409.1556 作者Karen Simonyan, Andrew Zisserman 超级超级经典的网络从14年到现在还是广泛使用 框架 相比AlexNet而言加深了网络的深度VGG1613层conv3层FC和VGG1916层conv3层FC是指表中的D、E两个模型。 code_vgg_Pytorch Modified from https://github.com/pytorch/vision.gitimport mathimport torch.nn as nn import torch.nn.init as init__all__ [VGG, vgg11, vgg11_bn, vgg13, vgg13_bn, vgg16, vgg16_bn,vgg19_bn, vgg19, ]class VGG(nn.Module):VGG model def __init__(self, features):super(VGG, self).__init__()self.features featuresself.classifier nn.Sequential(nn.Dropout(),nn.Linear(512, 512),nn.ReLU(True),nn.Dropout(),nn.Linear(512, 512),nn.ReLU(True),nn.Linear(512, 10),)# Initialize weightsfor m in self.modules():if isinstance(m, nn.Conv2d):n m.kernel_size[0] * m.kernel_size[1] * m.out_channelsm.weight.data.normal_(0, math.sqrt(2. / n))m.bias.data.zero_()def forward(self, x):x self.features(x)x x.view(x.size(0), -1)x self.classifier(x)return xdef make_layers(cfg, batch_normFalse):layers []in_channels 3for v in cfg:if v M:layers [nn.MaxPool2d(kernel_size2, stride2)]else:conv2d nn.Conv2d(in_channels, v, kernel_size3, padding1)if batch_norm:layers [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplaceTrue)]else:layers [conv2d, nn.ReLU(inplaceTrue)]in_channels vreturn nn.Sequential(*layers)cfg {A: [64, M, 128, M, 256, 256, M, 512, 512, M, 512, 512, M],B: [64, 64, M, 128, 128, M, 256, 256, M, 512, 512, M, 512, 512, M],D: [64, 64, M, 128, 128, M, 256, 256, 256, M, 512, 512, 512, M, 512, 512, 512, M],E: [64, 64, M, 128, 128, M, 256, 256, 256, 256, M, 512, 512, 512, 512, M, 512, 512, 512, 512, M], }def vgg11():VGG 11-layer model (configuration A)return VGG(make_layers(cfg[A]))def vgg11_bn():VGG 11-layer model (configuration A) with batch normalizationreturn VGG(make_layers(cfg[A], batch_normTrue))def vgg13():VGG 13-layer model (configuration B)return VGG(make_layers(cfg[B]))def vgg13_bn():VGG 13-layer model (configuration B) with batch normalizationreturn VGG(make_layers(cfg[B], batch_normTrue))def vgg16():VGG 16-layer model (configuration D)return VGG(make_layers(cfg[D]))def vgg16_bn():VGG 16-layer model (configuration D) with batch normalizationreturn VGG(make_layers(cfg[D], batch_normTrue))def vgg19():VGG 19-layer model (configuration E)return VGG(make_layers(cfg[E]))def vgg19_bn():VGG 19-layer model (configuration E) with batch normalizationreturn VGG(make_layers(cfg[E], batch_normTrue)) 3.ResNet paper:https://arxiv.org/abs/1512.03385 作者Kaiming He、Xiangyu Zhang、Shaoqing RenMicrosoft Research 使用残差网络避免模型变深带来的梯度爆炸和梯度消失的问题使得网络层数可以达到很深。 框架 残差连接 1完成恒等映射浅层特征可以直接的传递到深层特征中。 2梯度回传深层的梯度可以通过残差的结构直接传递到浅层的网络中。 基于上面的分析提出残差连接结构构建了不同的网络有18、34、50、101、152等。 code_ResNet_Pytorch import torch import torch.nn as nn import torchvision.models.resnet from torchvision.models.resnet import BasicBlock, Bottleneckclass ResNet(torchvision.models.resnet.ResNet):def __init__(self, block, layers, num_classes1000, group_normFalse):if group_norm:norm_layer lambda x: nn.GroupNorm(32, x)else:norm_layer Nonesuper(ResNet, self).__init__(block, layers, num_classes, norm_layernorm_layer)if not group_norm:self.maxpool nn.MaxPool2d(kernel_size3, stride2, padding0, ceil_modeTrue) # changefor i in range(2, 5):getattr(self, layer%d%i)[0].conv1.stride (2,2)getattr(self, layer%d%i)[0].conv2.stride (1,1)def resnet18(pretrainedFalse):Constructs a ResNet-18 model.Args:pretrained (bool): If True, returns a model pre-trained on ImageNetmodel ResNet(BasicBlock, [2, 2, 2, 2])if pretrained:model.load_state_dict(model_zoo.load_url(model_urls[resnet18]))return modeldef resnet34(pretrainedFalse):Constructs a ResNet-34 model.Args:pretrained (bool): If True, returns a model pre-trained on ImageNetmodel ResNet(BasicBlock, [3, 4, 6, 3])if pretrained:model.load_state_dict(model_zoo.load_url(model_urls[resnet34]))return modeldef resnet50(pretrainedFalse):Constructs a ResNet-50 model.Args:pretrained (bool): If True, returns a model pre-trained on ImageNetmodel ResNet(Bottleneck, [3, 4, 6, 3])if pretrained:model.load_state_dict(model_zoo.load_url(model_urls[resnet50]))return modeldef resnet50_gn(pretrainedFalse):Constructs a ResNet-50 model.Args:pretrained (bool): If True, returns a model pre-trained on ImageNetmodel ResNet(Bottleneck, [3, 4, 6, 3], group_normTrue)if pretrained:model.load_state_dict(model_zoo.load_url(model_urls[resnet50]))return modeldef resnet101(pretrainedFalse):Constructs a ResNet-101 model.Args:pretrained (bool): If True, returns a model pre-trained on ImageNetmodel ResNet(Bottleneck, [3, 4, 23, 3])if pretrained:model.load_state_dict(model_zoo.load_url(model_urls[resnet101]))return modeldef resnet101_gn(pretrainedFalse):Constructs a ResNet-101 model.Args:pretrained (bool): If True, returns a model pre-trained on ImageNetmodel ResNet(Bottleneck, [3, 4, 23, 3], group_normTrue)return modeldef resnet152(pretrainedFalse):Constructs a ResNet-152 model.Args:pretrained (bool): If True, returns a model pre-trained on ImageNetmodel ResNet(Bottleneck, [3, 8, 36, 3])if pretrained:model.load_state_dict(model_zoo.load_url(model_urls[resnet152]))return model
http://www.w-s-a.com/news/495685/

相关文章:

  • 南宁广告公司网站建设小程序源码破解
  • 沛县做网站xlec网站建设开发方式包括哪些方面
  • 山西网站建设 哪家好四川城乡和建设厅网站
  • 有瀑布流的网站小型商城网站
  • 百石网怎么做网站二次开发软件
  • 网站域名是什么东西制作网页哪家好
  • 合肥网站建设团队简述网站内容管理流程
  • 网站广告是内容营销吗wordpress增加背景图片
  • 网站建设技术jsp课程设计响应式布局网站开发
  • 东莞网站排名优化seo套路网站怎么做的
  • 我做网站网络建站一般多少钱
  • 如何快速提升网站关键词排名房地产网站开发毕业设计
  • 做网站 提交源码 论坛sem分析是什么意思
  • 网站建设与部署阿里云大学百度付费推广有几种方式
  • 作品集怎么做网站个人简历模板免费下
  • 工业网站素材重庆关键词自动排名
  • 拖拽式网站建设费用微网站怎么做的好名字
  • 长沙电信网站备案谷歌推广怎么做最有效
  • 网站建设与管理总结报告华为开发者联盟
  • 门诊部网站建设天空建筑网站
  • 扬州市城乡建设网站高端品牌鞋子有哪些牌子
  • 杭州网站建设招聘网长沙网络销售公司
  • 网站制作一年多少钱免费做电子章网站
  • 信誉好的营销网站建设徐州市铜山新区建设局网站
  • 建行网站关于我们山西seo和网络推广
  • 1m带宽做网站怎么样深圳网站建设制作开发公司
  • 网站建设 服务内容 费用郴州网站建设公司哪里有
  • 网站关键词重要性育才网站建设
  • 网络安全形势下怎么建设学校网站wordpress最新主题下载
  • 自己建设网站需要什么条件.gs域名做网站怎么样