做自己网站彩票,网页设计与制作教学大纲,网站文章百度快照怎么做,推广文案怎么写高通滤波器是一种可以通过去除图像低频信息来增强高频信息的滤波器。在图像处理中#xff0c;高通滤波器常常用于去除模糊或平滑效果#xff0c;以及增强边缘或细节。在本篇回答中#xff0c;我们将使用Python和OpenCV实现高通滤波器。
Step 1#xff1a;加载图像并进行傅… 高通滤波器是一种可以通过去除图像低频信息来增强高频信息的滤波器。在图像处理中高通滤波器常常用于去除模糊或平滑效果以及增强边缘或细节。在本篇回答中我们将使用Python和OpenCV实现高通滤波器。
Step 1加载图像并进行傅立叶变换
首先我们需要加载图像并将其转换为灰度图像。然后我们使用numpy的fft2函数进行二维傅立叶变换并使用numpy的fftshift函数将频谱中心移到图像中心。最后我们使用numpy的log函数计算幅度谱的对数值并使用opencv的normalize函数将其缩放到0到255之间的整数范围内。
以下是完整的Python代码
import numpy as np
import cv2
import matplotlib.pyplot as plt# 加载图像并将其转换为灰度图像
img cv2.imread(image.jpg)
gray cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 进行二维傅立叶变换
dft np.fft.fft2(gray)
dft_shift np.fft.fftshift(dft)# 计算幅度谱并进行对数变换
magnitude_spectrum 20 * np.log(np.abs(dft_shift))# 将幅度谱缩放到0到255的整数范围内
magnitude_spectrum cv2.normalize(magnitude_spectrum, None, 0, 255, cv2.NORM_MINMAX, dtypecv2.CV_8U)解释
Step 1.1我们使用cv2.imread函数加载图像并使用cv2.cvtColor函数将其转换为灰度图像。Step 1.2我们使用np.fft.fft2函数对灰度图像进行二维傅立叶变换。Step 1.3我们使用np.fft.fftshift函数将频谱中心移到图像中心。Step 1.4我们使用np.abs函数计算频谱的幅度并使用np.log函数进行对数变换。Step 1.5我们使用cv2.normalize函数将幅度谱缩放到0到255之间的整数范围内。
Step 2设计高通滤波器并应用
在本例中我们将使用巴特沃斯高通滤波器来过滤频谱。巴特沃斯高通滤波器可以被描述为一个阶数和半径的函数我们需要选择这些参数来调整滤波器的性能。阶数越高滤波器的陡峭程度就越高但会导致图像失真。半径越小滤波器去除的低频信息就越多。
我们将使用cv2.getOptimalDFTSize函数获取最佳的离散傅里叶变换尺寸以便在后续计算中避免频谱的失真。接下来我们将使用cv2.filter2D函数将高通滤波器应用于频谱图像并将其保存为变量filtered_spectrum。
以下是完整的Python代码
# 设计高通滤波器并应用
rows, cols gray.shape
crow, ccol rows // 2, cols // 2
R 60
n 2
D_0 R / ((rows ** 2 cols ** 2) ** 0.5)# 创建巴特沃斯高通滤波器
butterworth_highpass np.zeros((rows, cols), dtypenp.float32)
for i in range(rows):for j in range(cols):distance ((i - crow) ** 2 (j - ccol) ** 2) ** 0.5butterworth_highpass[i, j] 1 / (1 (distance / D_0) ** (2 * n))# 将高通滤波器应用于频谱图像
filtered_spectrum butterworth_highpass * dft_shift
filtered_spectrum np.fft.ifftshift(filtered_spectrum)解释
Step 2.1我们获取图像的行和列数并计算其中心坐标。Step 2.2我们选择半径R和阶数n作为巴特沃斯高通滤波器的参数并计算截止频率D_0。Step 2.3我们使用两个嵌套的for循环来创建一个与输入图像大小相同的数组butterworth_highpass并为每个像素计算对应的高通滤波器值。Step 2.4我们使用np.fft.ifftshift函数将频谱中心移回原来的位置。
Step 3进行傅立叶逆变换并显示结果
最后一步是将处理后的频谱图像进行逆变换并将结果保存为变量filtered_image。我们使用opencv的normalize函数将结果缩放到0到255之间的整数范围内并使用matplotlib的imshow函数显示结果。
# 进行傅立叶逆变换并显示结果
filtered_image cv2.idft(filtered_spectrum)
filtered_image cv2.magnitude(filtered_image[:, :, 0], filtered_image[:, :, 1])
filtered_image cv2.normalize(filtered_image, None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8U)plt.imshow(filtered_image, cmapgray)
plt.title(High Pass Filtered Image)
plt.show()解释
Step 3.1我们使用cv2.idft函数将经过高通滤波器处理的频谱进行傅里叶逆变换以便将其转换回图像域。Step 3.2我们使用cv2.magnitude函数计算逆变换结果的幅值并保存在变量filtered_image中。Step 3.3我们使用cv2.normalize函数将结果缩放到0到255之间的整数范围内并将其转换为8位无符号整数。Step 3.4我们使用matplotlib.pyplot.imshow函数显示结果并添加一个标题。
完整的Python代码如下
import cv2
import numpy as np
import matplotlib.pyplot as plt# 读取图像并转换为灰度图像
img cv2.imread(input.jpg, cv2.IMREAD_GRAYSCALE)# 进行离散傅里叶变换
dft cv2.dft(np.float32(img), flagscv2.DFT_COMPLEX_OUTPUT)
dft_shift np.fft.fftshift(dft)# 设计高通滤波器并应用
rows, cols img.shape
crow, ccol rows // 2, cols // 2
R 60
n 2
D_0 R / ((rows ** 2 cols ** 2) ** 0.5)# 创建巴特沃斯高通滤波器
butterworth_highpass np.zeros((rows, cols), dtypenp.float32)
for i in range(rows):for j in range(cols):distance ((i - crow) ** 2 (j - ccol) ** 2) ** 0.5butterworth_highpass[i, j] 1 / (1 (distance / D_0) ** (2 * n))# 将高通滤波器应用于频谱图像
filtered_spectrum butterworth_highpass * dft_shift
filtered_spectrum np.fft.ifftshift(filtered_spectrum)# 进行傅立叶逆变换并显示结果
filtered_image cv2.idft(filtered_spectrum)
filtered_image cv2.magnitude(filtered_image[:, :, 0], filtered_image[:, :, 1])
filtered_image cv2.normalize(filtered_image, None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8U)plt.imshow(filtered_image, cmapgray)
plt.title(High Pass Filtered Image)
plt.show()这个程序将在窗口中显示过滤后的图像并保存为当前目录中的文件。