当前位置: 首页 > news >正文

学院网站建设实例成都小程序推广企业

学院网站建设实例,成都小程序推广企业,南宁制作网站企业,合肥昱天建设有限公司网站上篇博文我们已经写完统计推荐部分#xff0c;现在我们将使用VueElement-uiSpringBoot来快速搭建系统#xff0c;展示出电影#xff0c;并介绍个性化推荐部分。 1 系统页面设计 初步是想设计一个类似豆瓣电影推荐系统 用户登陆后#xff0c;可以查看高分电影可以查看推荐…上篇博文我们已经写完统计推荐部分现在我们将使用VueElement-uiSpringBoot来快速搭建系统展示出电影并介绍个性化推荐部分。 1 系统页面设计 初步是想设计一个类似豆瓣电影推荐系统 用户登陆后可以查看高分电影可以查看推荐的电影可以评分 1.1 前端模板下载 由于时间原因这里选择了一个仿豆瓣电影系统模版本意不是为了锻炼vue能力怎么简单怎么来。现在我们对该系统进行修改使用Element-ui来快速开发。 1.2 后端系统搭建 使用SpringBoot进行快速开发添加MongoDB的相关依赖写接口测试是否获取数据成功测试成功后Vue写axios相关代码 注意一定要注意版本问题报错会很糟心… data:mongodb:host: 服务器IPport: 27017database: recommenderusername: rootpassword: 1234562. 基于隐语义模型的协同过滤算法 基于用户行为分析的推荐算法一般称为协同过滤算法。所谓协同过滤就是指众多的用户可以齐心协力通过不断地和网站互动使自己的推荐列表能够不断过滤掉自己不感兴趣的物品从而越来越满足自己的需求。常见实现方法的包括 基于邻域的方法隐语义模型基于图的随机游走算法 我们使用隐语义模型LFM它的核心思想是通过发掘隐含特征(latent factor) 来完成推荐任务。后续我们将对此进行改进。 主要步骤 UserId 和 MovieID 做笛卡尔积产生uidmid的元组通过模型预测uidmid的元组。将预测结果通过预测分值进行排序。返回分值最大的 K 个电影作为当前用户的推荐。通过ALS计算出电影相似度存入MongoDB数据库这为后面实时推荐做准备 // 核心程序 // 从rating数据中提取所有的uid和mid并去重 val userRDD ratingRDD.map(_._1).distinct() val movieRDD ratingRDD.map(_._2).distinct()// 训练隐语义模型 val trainData ratingRDD.map( x Rating(x._1, x._2, x._3) )val (rank, iterations, lambda) (200, 5, 0.1) val model ALS.train(trainData, rank, iterations, lambda)// 基于用户和电影的隐特征计算预测评分得到用户的推荐列表 // 计算user和movie的笛卡尔积得到一个空评分矩阵 val userMovies userRDD.cartesian(movieRDD)// 调用model的predict方法预测评分 val preRatings model.predict(userMovies)val userRecs preRatings.filter(_.rating 0) // 过滤出评分大于0的项.map(rating ( rating.user, (rating.product, rating.rating) ) ).groupByKey().map{case (uid, recs) UserRecs( uid, recs.toList.sortWith(_._2_._2).take(USER_MAX_RECOMMENDATION).map(xRecommendation(x._1, x._2)) )}.toDF()userRecs.write.option(uri, mongoConfig.uri).option(collection, USER_RECS).mode(overwrite).format(com.mongodb.spark.sql).save()// 基于电影隐特征计算相似度矩阵得到电影的相似度列表 val movieFeatures model.productFeatures.map{case (mid, features) (mid, new DoubleMatrix(features)) }// 对所有电影两两计算它们的相似度先做笛卡尔积 val movieRecs movieFeatures.cartesian(movieFeatures).filter{// 把自己跟自己的配对过滤掉case (a, b) a._1 ! b._1}.map{case (a, b) {val simScore this.consinSim(a._2, b._2)( a._1, ( b._1, simScore ) )}}.filter(_._2._2 0.8) // 过滤出相似度大于0.8的.groupByKey().map{case (mid, items) MovieRecs( mid, items.toList.sortWith(_._2 _._2).map(x Recommendation(x._1, x._2)) )}.toDF() movieRecs.write.option(uri, mongoConfig.uri).option(collection, MOVIE_RECS).mode(overwrite).format(com.mongodb.spark.sql).save()但该方法存在下列缺点 很难实现实时的推荐。推荐模型的更新需要在用户行为记录上反复迭代每次训练都很耗时。冷启动问题明显。
http://www.w-s-a.com/news/253892/

相关文章:

  • 哪个网站做调查问卷赚钱短视频制作神器
  • 上海企业响应式网站建设推荐汕头网络优化排名
  • 怎么建立公司网站平台怎么将网站做成公司官网
  • 培训学校网站怎样快速建设网站模板
  • 建设电子商务网站论文云服务器安装wordpress
  • 做展板好的网站学校的网站开发过程
  • 宁波搭建网站价格西部数码网站正在建设中是什么意思
  • 吉林省建设项目招标网站苏州网络推广定制
  • 网站域名所有权证明引流推广接单
  • 做网站百度百科孟州网站建设
  • 服务网站建设企业广州模板建站系统
  • 怎么做属于自己的免费网站浏览器游戏网址
  • 上海城乡住房建设厅网站西安网站推广慧创科技
  • 做策划网站推广怎么写简历互联网公司手机网站
  • 怎么做宣传网站网站建设采购项目合同书
  • 网站的空间和域名备案做网站要会写什么
  • wap 网站源码企业网站被转做非法用途
  • 下载网站模板怎么使用做物流网站的公司
  • 网站 商城 app 建设建设银行江苏省行网站
  • 广州网站开发建设西安广告公司联系方式
  • 怎么用腾讯云服务器做网站个人网站开发视频
  • 网站建设技术代码坦洲网站建设公司哪家好
  • 阿里云对象存储做静态网站怎样做网站性能优化
  • 怎样做理财投资网站装修平面图用什么软件简单
  • 建手机wap网站大概多少钱苏州网站设计公司有哪些
  • 网站建设需求文件学校网站建设方案及报价
  • 网站开发一般多少钱wordpress打赏赞插件
  • 做中国o2o网站领导唐山网站制作软件
  • 门户网站简介做网站一天能接多少单
  • 论坛类网站建设遵义网站制作外包