当前位置: 首页 > news >正文

网站建设要做哪些建设部网站证书查询

网站建设要做哪些,建设部网站证书查询,工信部2017网站备案,c语言必背100代码在这篇文章中#xff0c;我将介绍些懒惰学习与渴求学习的算法例子#xff0c;会介绍其概念、优缺点以及其python的运用。 一、渴求学习 1.1概念 渴求学习#xff08;Eager Learning#xff09;是指在训练阶段构建出复杂的模型#xff0c;然后在预测阶段运用这个构建出的…在这篇文章中我将介绍些懒惰学习与渴求学习的算法例子会介绍其概念、优缺点以及其python的运用。 一、渴求学习 1.1概念 渴求学习Eager Learning是指在训练阶段构建出复杂的模型然后在预测阶段运用这个构建出的模型来进行预测。在西瓜书中将其翻译为“急切学习” 1.2 优缺点 优点预测效率高因为已经构建好所以直接拿来用即可、适用范围广泛、可解释性强。 缺点训练时间长、对静态数据集有效对于一个动态的数据集渴求学习需要对其频繁计算与训练这样在有些时候是不符合实际需求的、模型更新能力弱。 1.3 常见渴求学习的算法 通常像逻辑回归、决策树、逻辑森林、SVM、深度学习等都属于渴求学习。 二、懒惰学习 1.1 概念 懒惰学习Lazy Learning与传统的渴求学习对应它是一种机器学习的范式。通常地这类学习算法会在训练阶段做极少或压根不做计算而在之后的预测阶段才进行计算。可以说这类学习算法不进行复杂运算而是转向简单的存储并用这些存储去做出决策。 仔细观察我们会发现渴求学习与懒惰学习间实际反应了时间复杂度与空间复杂度间的权衡。在渴求学习中我们在训练阶段就要去构建一个模型此时的时间复杂度通常会很高而到了预测阶段则会相对降低因为此时我们直接使用了那个构建的模型而在整个过程中真正需要去存储的只有那个构建好的模型而不是庞大的训练集而懒惰学习则与之相反它起先时间复杂度很低而后变高因为开始时只要存储数据即可而到了之后的预测阶段才开始构建局部模型去预测所以复杂度升高在整个过程中其空间复杂度都会很高因为它需要存储的不是一个构建好的模型而是整个庞大的训练集。所以在实际运用是可以根据需求找到对于时间与空间之间的平衡点而进行正确的决定。 1.2 优缺点 优点适应性强、灵活性高、训练时间较少。 缺点内存消耗大、可解释性弱。 1.3 常见懒惰学习的算法 1KNN算法 之前我有详细介绍过KNN算法所以在这里我只放一份代码有需要的可以看我以往的文章。代码如下 import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsClassifier import matplotlib.pyplot as plt# 加载数据集并分割 iris load_iris() X iris.data[:, [2, 3]] # 只使用花瓣长度和宽度 y iris.target X_train, X_test, y_train, y_test train_test_split(X, y, test_size0.3, random_state1, stratifyy)# 标准化 sc StandardScaler() sc.fit(X_train) X_train_std sc.transform(X_train) X_test_std sc.transform(X_test)# KNN实例化 knn KNeighborsClassifier(n_neighbors3, p2, metricminkowski) knn.fit(X_train_std, y_train)# 预测 y_pred knn.predict(X_test_std)# 计算准确率 accuracy np.mean(y_pred y_test) print(fAccuracy: {accuracy * 100:.2f}%)# 可视化结果 # 训练集 plt.scatter(X_train_std[y_train0, 0], X_train_std[y_train0, 1], colorred, markero, labelsetosa) plt.scatter(X_train_std[y_train1, 0], X_train_std[y_train1, 1], colorblue, markerx, labelversicolor) plt.scatter(X_train_std[y_train2, 0], X_train_std[y_train2, 1], colorgreen, markers, labelvirginica) # 测试集 plt.scatter(X_test_std[y_test0, 0], X_test_std[y_test0, 1], colorlightcoral, markero, labeltest setosa) plt.scatter(X_test_std[y_test1, 0], X_test_std[y_test1, 1], colorlightblue, markerx, labeltest versicolor) plt.scatter(X_test_std[y_test2, 0], X_test_std[y_test2, 1], colorlightgreen, markers, labeltest virginica) plt.xlabel(Petal length [standardized]) plt.ylabel(Petal width [standardized]) plt.legend(locupper left) plt.show() 其绘制出的图表为 2局部加权回归LRW 局部加权回归的思路是 在训练阶段不进行计算只存储数据然后到了预测阶段则对于每一个新的输入数据点都根据周围附近的数据点来构建一个局部线性回归模型并对这个输入数据点去预测预测完则作废。 其代码如下 import numpy as np import matplotlib.pyplot as plt# 生成模拟数据 np.random.seed(42) X np.linspace(0, 10, 100).reshape(-1, 1) y np.sin(X).ravel() np.random.normal(0, 0.1, sizeX.shape[0])# LWR算法实现 def lw_regression(X_train, y_train, X_test, tau):# 带宽参数taum X_train.shape[0]weights np.eye(m)for i in range(m):diff X_train[i] - X_testweights[i, i] np.exp(-diff * diff.T / (2.0 * tau * tau))theta np.linalg.solve(X_train.T.dot(weights.dot(X_train)), X_train.T.dot(weights.dot(y_train)))return X_test.dot(theta)# 预测 predictions [] tau 0.1 for point in X:predictions.append(lw_regression(X, y, point, tau)) predictions np.array(predictions)# 可视化结果 plt.figure(figsize(10, 6)) plt.scatter(X, y, colorblue, labelTraining data) plt.plot(X, predictions, colorred, linewidth2, labelLWR fit) plt.xlabel(Feature) plt.ylabel(Target) plt.title(Locally Weighted Regression (LWR)) plt.legend() plt.show() 然后代码做出的图表如下 在这里我给出代码的流程图如下 这个流程图就是LWR的主要流程至于整个代码则是分为了三部分生成模拟数据、预测以及可视化。其中关于生成模拟数据的过程中我先设置了随机数种子然后生成了0到10均匀分布的100个点接着将之reshape成一列最后生成正弦波形数据并添加一些正态分布的噪声。 最后我再解释下生成的图像其中蓝色的点是生成的数据点然后红色的曲线是加权回归算法的拟合结果。可以看出局部加权回归算法生成的拟合曲线相当平滑。这是因为算法通过给每个训练样本分配权重并根据权重构建局部线性模型从而减少了噪声的影响。其中关于参数tau是指带宽它控制着参数下降的速度较小的tau值意味着权重随距离的增加而迅速下降这会导致模型更加关注附近的点可能产生过拟合。较大的tau值会使权重衰减得更慢模型会考虑到更远的点可能导致欠拟合。 3懒惰朴素贝叶斯 虽然朴素贝叶斯通常属于渴求学习但是让我们将其所有训练数据保存下来然后在预测时计算每个类别的条件概率而不是预先计算并存储概率分布。那么此时它就属于懒惰学习了。 4懒惰SVM 在训练阶段我们只让它去存储训练数据与支持向量而不去构建决策边界然后在预测阶段根据输入数据与支持向量的关系再去做分类决策那么此时的支持向量机就可以被称为“懒惰SVM”。 除上述外还有懒惰强化学习、懒惰实例基学习、懒惰决策规则等也属于懒惰学习的范畴在此不一一叙述了。 此上
http://www.w-s-a.com/news/708243/

相关文章:

  • 怎样建设网站优化珠海网站建设开发
  • 泰兴住房和城乡建设厅网站福州app开发
  • 免费制作公司网站seo前线
  • 导购网站怎么推广有网站源码怎么搭建网站
  • 网站开发问题杭州制作公司网站
  • 网站推广seo是什么wordpress 去除顶部
  • 建筑学不会画画影响大吗电子商务沙盘seo关键词
  • 重庆网站建设找承越上海建设工程招投标网
  • 网站建设四个步骤下单的网站建设教程
  • 网站建设合同的验收表响应式网站建设哪家好
  • 手机网站建设视频长沙百家号seo
  • 网站未备案怎么访问网站开发前端需要学什么
  • 正黄集团博弘建设官方网站wordpress设置固定链接和伪静态
  • wordpress 建网站视频如何实现网站生成网页
  • 杭州品牌网站建设推广个人的网站建设目标
  • 济南有哪些网站是做家具团购的贸易公司自建免费网站
  • wap网站psd成立公司在什么网站
  • 网站建设婚恋交友聊城网站建设费用
  • 沈阳网站建设联系方式尉氏县金星网架公司
  • 医院网站建设实施方案基础微网站开发信息
  • 网站建设开发服务费记账百度指数搜索
  • 网站建设备案流程windows优化大师有必要安装吗
  • 怎么网站定制自己做网站卖视频
  • 网站开发二线城市网站制作过程中碰到的问题
  • 最好网站建设公司制作平台小程序开发教程资料
  • 陕西省高速建设集团公司网站国内做会展比较好的公司
  • 建设学校网站的原因网页设计实训报告1500
  • 网站建设客户来源江门网站设计华企立方
  • 自己如何做棋牌网站宁波网络推广优化方案
  • 深圳招聘网站推荐seo网站推广方案