免费vip网站推广,小程序开发平台免费,免费商业wordpress主题,一般在什么网站上做电子请帖简介
蚁群算法#xff08;Ant Colony Optimization, ACO#xff09;是一种基于自然启发的优化算法#xff0c;由意大利学者马可多里戈#xff08;Marco Dorigo#xff09;在1992年首次提出。它受自然界中蚂蚁觅食行为的启发#xff0c;用于解决离散优化问题。
在自然界…简介
蚁群算法Ant Colony Optimization, ACO是一种基于自然启发的优化算法由意大利学者马可·多里戈Marco Dorigo在1992年首次提出。它受自然界中蚂蚁觅食行为的启发用于解决离散优化问题。
在自然界中蚂蚁通过释放和追踪一种化学物质即信息素找到最短路径。蚁群算法通过模拟这种信息素的机制在优化问题中迭代寻找近似最优解。
代码说明
距离矩阵distance_matrix 是问题的输入表示城市之间的距离。 信息素更新信息素会随时间蒸发并根据路径长度进行强化。 路径构建每只蚂蚁根据概率选择下一步的城市概率由信息素和启发式因子共同决定。 运行结果输出最佳路径和对应路径长度。
代码
import numpy as npclass AntColony:def __init__(self, distance_matrix, n_ants, n_iterations, alpha1, beta2, evaporation_rate0.5, Q100):self.distance_matrix distance_matrixself.n_ants n_antsself.n_iterations n_iterationsself.alpha alpha # 控制信息素重要程度self.beta beta # 控制启发式因子的权重self.evaporation_rate evaporation_rateself.Q Q # 信息素强度常数self.num_cities distance_matrix.shape[0]self.pheromone_matrix np.ones((self.num_cities, self.num_cities)) # 初始信息素矩阵def _initialize_ants(self):return [np.random.permutation(self.num_cities) for _ in range(self.n_ants)]def _calculate_path_length(self, path):return sum(self.distance_matrix[path[i], path[(i 1) % len(path)]] for i in range(len(path)))def _update_pheromones(self, all_paths, all_lengths):self.pheromone_matrix * (1 - self.evaporation_rate) # 信息素蒸发for path, length in zip(all_paths, all_lengths):for i in range(len(path)):start, end path[i], path[(i 1) % len(path)]self.pheromone_matrix[start, end] self.Q / length # 信息素更新def _choose_next_city(self, current_city, visited):probabilities []for city in range(self.num_cities):if city not in visited:pheromone self.pheromone_matrix[current_city, city] ** self.alphavisibility (1 / self.distance_matrix[current_city, city]) ** self.betaprobabilities.append(pheromone * visibility)else:probabilities.append(0)probabilities probabilities / np.sum(probabilities)return np.random.choice(range(self.num_cities), pprobabilities)def _construct_solution(self, ant):path [ant]visited set(path)for _ in range(self.num_cities - 1):next_city self._choose_next_city(path[-1], visited)path.append(next_city)visited.add(next_city)return pathdef run(self):best_path Nonebest_length float(inf)for iteration in range(self.n_iterations):all_paths []all_lengths []for ant in range(self.n_ants):start_city np.random.randint(self.num_cities)path self._construct_solution(start_city)length self._calculate_path_length(path)all_paths.append(path)all_lengths.append(length)if length best_length:best_path pathbest_length lengthself._update_pheromones(all_paths, all_lengths)print(fIteration {iteration 1}: Best length {best_length})return best_path, best_length# 示例距离矩阵
distance_matrix np.array([[0, 2, 2, 5, 7],[2, 0, 4, 8, 2],[2, 4, 0, 1, 3],[5, 8, 1, 0, 2],[7, 2, 3, 2, 0]
])# 创建蚁群算法实例
ant_colony AntColony(distance_matrix, n_ants10, n_iterations100, alpha1, beta2, evaporation_rate0.5, Q100)# 运行算法
best_path, best_length ant_colony.run()print(Best path:, best_path)
print(Best length:, best_length)