像素人物制作网站,广告设计与制作合同范本,网页设计教程清华大学出版社,推广公司违法吗多维时序 | MATLAB实现SSA-CNN-SVM麻雀算法优化卷积神经网络-支持向量机多变量时间序列预测 目录 多维时序 | MATLAB实现SSA-CNN-SVM麻雀算法优化卷积神经网络-支持向量机多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 多维时序 | MATLAB实现…多维时序 | MATLAB实现SSA-CNN-SVM麻雀算法优化卷积神经网络-支持向量机多变量时间序列预测 目录 多维时序 | MATLAB实现SSA-CNN-SVM麻雀算法优化卷积神经网络-支持向量机多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 多维时序 | MATLAB实现SSA-CNN-SVM麻雀算法优化卷积神经网络-支持向量机多变量时间序列预测。 模型描述 MATLAB实现SSA-CNN-SVM麻雀算法优化卷积神经网络-支持向量机多变量时间序列预测用于处理时间序列数据适用平台Matlab 2023及以上 1.data为数据集格式为excel4个输入特征1个输出特征考虑历史特征的影响多变量时间序列预测 2.主程序文件运行即可 3.命令窗口输出R2、MAE、MAPE、MSE和MBE可在下载区获取数据和程序内容 注意程序和数据放在一个文件夹运行环境为Matlab2023b及以上。 麻雀算法SSA优化的参数为:CNN的批处理大小、学习率、正则化系数能够避免人工选取参数的盲目性有效提高其预测精度 程序设计
完整程序和数据获取方式1同等价值程序兑换完整程序和数据获取方式2私信博主回复MATLAB实现SSA-CNN-SVM麻雀算法优化卷积神经网络-支持向量机多变量时间序列预测获取。 %---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 数据集分析
outdim 1; % 最后一列为输出
num_size 0.7; % 训练集占数据集比例
num_train_s round(num_size * num_samples); % 训练集样本个数
f_ size(res, 2) - outdim; % 输入特征维度
%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 划分训练集和测试集
P_train res(1: num_train_s, 1: f_);
T_train res(1: num_train_s, f_ 1: end);
M size(P_train, 2);
%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
P_test res(num_train_s 1: end, 1: f_);
T_test res(num_train_s 1: end, f_ 1: end);
N size(P_test, 2);
————————————————
版权声明本文为CSDN博主「机器学习之心」的原创文章遵循CC 4.0 BY-SA版权协议转载请附上原文出处链接及本声明。
原文链接https://blog.csdn.net/kjm13182345320/article/details/130471154
参考资料 [1] http://t.csdn.cn/pCWSp [2] https://download.csdn.net/download/kjm13182345320/87568090?spm1001.2014.3001.5501 [3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm1001.2014.3001.5501