当前位置: 首页 > news >正文

四川省城乡建设信息网站证件查询wordpress 本地转移

四川省城乡建设信息网站证件查询,wordpress 本地转移,电销如何介绍网站建设,做ptt网站文章目录 简单分类模型 - 逻辑回归1.1 准备数据1.2 定义假设函数Sigmoid 函数 1.3 定义代价函数1.4 定义梯度下降算法gradient descent(梯度下降) 1.5 绘制决策边界1.6 计算准确率1.7 试试用Sklearn来解决2.1 准备数据(试试第二个例子)2.2 假设函数与前h相同2.3 代价函数与前相… 文章目录 简单分类模型 - 逻辑回归1.1 准备数据1.2 定义假设函数Sigmoid 函数 1.3 定义代价函数1.4 定义梯度下降算法gradient descent(梯度下降) 1.5 绘制决策边界1.6 计算准确率1.7 试试用Sklearn来解决2.1 准备数据(试试第二个例子)2.2 假设函数与前h相同2.3 代价函数与前相同2.4 梯度下降算法与前相同2.5 欠拟合的了模型过于简单增加一些多项式特征2.6 定义正则化项的代价函数regularized cost正则化代价函数 2.7 定义正则化的梯度下降算法实验1 计算基于正则化得到的准确率2.8 试试sklearn参考3.1 准备数据 实验2 完成3.2 调用逻辑回归模型完成分类3.2 调用普通的逻辑回归模型来进行多分类(调用1.4的梯度下降算法) 实验3 完成3.3 调用正则化的逻辑回归模型完成分类3.3调用正则化的逻辑回归模型来进行多分类(调用2.7的梯度下降算法) 实验4 完成3.3 调用SKLEARN完成分类3.4 调用SKLEARN 简单分类模型 - 逻辑回归 在这一次练习中我们将要实现逻辑回归并且应用到一个分类任务。我们还将通过将正则化加入训练算法来提高算法的鲁棒性并用更复杂的情形来测试它。 1.1 准备数据 本实验的数据包含两个变量(评分1和评分2可以看作是特征),某大学的管理者想通过申请学生两次测试的评分来决定他们是否被录取。因此构建一个可以基于两次测试评分来评估录取可能性的分类模型。 import numpy as np import pandas as pd import matplotlib.pyplot as plt#利用pandas显示数据 path ex2data1.txt data pd.read_csv(path, headerNone, names[Exam1, Exam2, Admitted]) data.head()Exam1Exam2Admitted034.62366078.0246930130.28671143.8949980235.84740972.9021980360.18259986.3085521479.03273675.3443761 data.info()class pandas.core.frame.DataFrame RangeIndex: 100 entries, 0 to 99 Data columns (total 3 columns):# Column Non-Null Count Dtype --- ------ -------------- ----- 0 Exam1 100 non-null float641 Exam2 100 non-null float642 Admitted 100 non-null int64 dtypes: float64(2), int64(1) memory usage: 2.5 KB#看看数据的形状 data.shape(100, 3)让我们创建两个分数的散点图并使用颜色编码来可视化如果样本是正的被接纳或负的未被接纳。 positive_indexdata[Admitted].isin([1]) negative_indexdata[Admitted].isin([0])positive_index0 False 1 False 2 False 3 True 4 True... 95 True 96 True 97 True 98 True 99 True Name: Admitted, Length: 100, dtype: boolplt.scatter(data[positive_index][Exam1],data[positive_index][Exam2],colorred,marker) plt.scatter(data[negative_index][Exam1],data[negative_index][Exam2],colorblue,markero) plt.legend([admitted,Not admitted]) plt.xlabel(Exam1) plt.ylabel(Exam2) plt.show()positive data[data[Admitted].isin([1])] negative data[data[Admitted].isin([0])]fig, ax plt.subplots(figsize(6,4)) ax.scatter(positive[Exam1],positive[Exam2],s50,cb,markero,labelAdmitted) ax.scatter(negative[Exam1],negative[Exam2],s50,cr,markerx,labelNot Admitted) ax.legend() ax.set_xlabel(Exam 1 Score) ax.set_ylabel(Exam 2 Score) plt.show()看起来在两类间有一个清晰的决策边界。现在我们需要实现逻辑回归那样就可以训练一个模型来预测结果。 #准备训练数据 col_numdata.shape[1] Xdata.iloc[:,:col_num-1] ydata.iloc[:,col_num-1]X.insert(0,ones,1) X.shape(100, 3)XX.values X.shape(100, 3)yy.values y.shape(100,)1.2 定义假设函数 Sigmoid 函数 g g g 代表一个常用的逻辑函数logistic function为 S S S形函数Sigmoid function公式为 g ( z ) 1 1 e − z g(z)\frac{1}{1{{e}^{-z}}} g(z)1e−z1​ 合起来我们得到逻辑回归模型的假设函数 h ( x ) 1 1 e − w T x {{h}}\left( x \right)\frac{1}{1{{e}^{-{{w }^{T}}x}}} h(x)1e−wTx1​ def sigmoid(z):return 1 / (1 np.exp(-z))让我们做一个快速的检查来确保它可以工作。 nums np.arange(-10, 10, step1) fig, ax plt.subplots(figsize(6, 4)) ax.plot(nums, sigmoid(nums), r) plt.show()wnp.zeros((X.shape[1],1))#定义假设函数h(x)1/(1exp^(-w.Tx)) def h(X,w):zXwhsigmoid(z)return h1.3 定义代价函数 y_hatsigmoid(Xw)X.shape,y.shape,np.log(y_hat).shape((100, 3), (100,), (100, 1))现在我们需要编写代价函数来评估结果。 代价函数 J ( w ) − 1 m ∑ i 1 m ( y ( i ) log ⁡ ( h ( x ( i ) ) ) ( 1 − y ( i ) ) log ⁡ ( 1 − h ( x ( i ) ) ) ) J\left(w\right)-\frac{1}{m}\sum\limits_{i1}^{m}{({{y}^{(i)}}\log \left( {h}\left( {{x}^{(i)}} \right) \right)\left( 1-{{y}^{(i)}} \right)\log \left( 1-{h}\left( {{x}^{(i)}} \right) \right))} J(w)−m1​i1∑m​(y(i)log(h(x(i)))(1−y(i))log(1−h(x(i)))) #代价函数构造 def cost(X,w,y):#当X(m,n1),y(m,),w(n1,1)y_hatsigmoid(Xw)rightnp.multiply(y.ravel(),np.log(y_hat).ravel())np.multiply((1-y).ravel(),np.log(1-y_hat).ravel())cost-np.sum(right)/X.shape[0]return cost#设置初始的权值 wnp.zeros((X.shape[1],1)) #查看初始的代价 cost(X,w,y)0.6931471805599453看起来不错接下来我们需要一个函数来计算我们的训练数据、标签和一些参数 w w w的梯度。 1.4 定义梯度下降算法 gradient descent(梯度下降) 这是批量梯度下降batch gradient descent转化为向量化计算 1 m X T ( S i g m o i d ( X W ) − y ) \frac{1}{m} X^T( Sigmoid(XW) - y ) m1​XT(Sigmoid(XW)−y) ∂ J ( w ) ∂ w j 1 m ∑ i 1 m ( h ( x ( i ) ) − y ( i ) ) x j ( i ) \frac{\partial J\left( w \right)}{\partial {{w }_{j}}}\frac{1}{m}\sum\limits_{i1}^{m}{({{h}}\left( {{x}^{(i)}} \right)-{{y}^{(i)}})x_{_{j}}^{(i)}} ∂wj​∂J(w)​m1​i1∑m​(h(x(i))−y(i))xj​(i)​ def grandient(X,y,iter_num,alpha):yy.reshape((X.shape[0],1))wnp.zeros((X.shape[1],1))cost_lst[]for i in range(iter_num):y_predh(X,w)-ytempnp.zeros((X.shape[1],1))for j in range(X.shape[1]):rightnp.multiply(y_pred.ravel(),X[:,j])gradient1/(X.shape[0])*(np.sum(right))temp[j,0]w[j,0]-alpha*gradientwtempcost_lst.append(cost(X,w,y.ravel()))return w,cost_lstiter_num,alpha1000000,0.001 w,cost_lstgrandient(X,y,iter_num,alpha)cost_lst[iter_num-1]0.22465416189188264plt.plot(range(iter_num),cost_lst,b-o)[matplotlib.lines.Line2D at 0x14224c08190]Xw—X(m,n) w (n,1) warray([[-15.39517866],[ 0.12825989],[ 0.12247929]])1.5 绘制决策边界 0w[0,0]w[1,0]*x1w[2,0]*x2,令y0 可以得到x2和x1的关系为 x2(-w[0,0]-w[1,0]*x1)/w[2,0] #绘图 x_exma1np.linspace(data[Exam1].min(),data[Exam1].max(),100) x2(-w[0,0]-w[1,0]*x_exma1)/(w[2,0]) plt.plot(x_exma1,x2,r-) plt.scatter(data[positive_index][Exam1],data[positive_index][Exam2],colorc,marker^) plt.scatter(data[negative_index][Exam1],data[negative_index][Exam2],colorb,markero) plt.show()1.6 计算准确率 如何用我们所学的参数w来为数据集X输出预测来给我们的分类器的训练精度打分。 逻辑回归模型的假设函数 h ( x ) 1 1 e − w T X {{h}}\left( x \right)\frac{1}{1{{e}^{-{{w }^{T}}X}}} h(x)1e−wTX1​ 当 h {{h}} h大于等于0.5时预测 y1 当 h {{h}} h小于0.5时预测 y0 。 y_p_true(h(X,w)0.5).ravel() y_p_truearray([False, False, False, True, True, False, True, False, True,True, True, False, True, True, False, True, False, False,True, True, False, True, False, False, True, True, True,True, False, False, True, True, False, False, False, False,True, True, False, False, True, False, True, True, False,False, True, True, True, True, True, True, True, False,False, False, True, True, True, True, True, False, False,False, False, False, True, False, True, True, False, True,True, True, True, True, True, True, False, True, True,True, True, False, True, True, False, True, True, False,True, True, False, True, True, True, True, True, False,True])y_p_pred(data[Admitted]1).values y_p_predarray([False, False, False, True, True, False, True, True, True,True, False, False, True, True, False, True, True, False,True, True, False, True, False, False, True, True, True,False, False, False, True, True, False, True, False, False,False, True, False, False, True, False, True, False, False,False, True, True, True, True, True, True, True, False,False, False, True, False, True, True, True, False, False,False, False, False, True, False, True, True, False, True,True, True, True, True, True, True, False, False, True,True, True, True, True, True, False, True, True, False,True, True, False, True, True, True, True, True, True,True])np.sum(y_p_predy_p_true)/X.shape[0]0.891.7 试试用Sklearn来解决 from sklearn.linear_model import LogisticRegression clf LogisticRegression().fit(X, y) clf.score(X,y)0.89clf.predict(X)array([0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1,0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1,0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1,1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1], dtypeint64)np.array([1 if item0.5 else 0 for item in h(X,w)])array([0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1,0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1,0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1,1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1])np.argmax(clf.predict_proba(X),axis1)array([0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1,0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1,0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1,1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1], dtypeint64)X.shape,y.shape((100, 3), (100,))from sklearn.datasets import load_iris from sklearn.linear_model import LogisticRegression y clf LogisticRegression().fit(X, y) clf.predict(X)array([0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1,0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1,0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1,1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1], dtypeint64)clf.predict(X).shape(100,)y.shape(100,)np.sum(clf.predict(X)y.ravel())/np.sum(X.shape[0])0.89#所以分类问题中的score用的是准确率 clf.score(X,y)0.89我们的逻辑回归分类器预测正确如果一个学生被录取或没有录取达到89%的精确度。不坏记住这是训练集的准确性。我们没有保持住了设置或使用交叉验证得到的真实逼近所以这个数字有可能高于其真实值这个话题将在以后说明。 2.1 准备数据(试试第二个例子) 在训练的第二部分我们将要通过加入正则项提升逻辑回归算。简而言之正则化是成本函数中的一个术语它使算法更倾向于“更简单”的模型在这种情况下模型将更小的系数。这个理论助于减少过拟合提高模型的泛化能力。 设想你是工厂的生产主管你有一些芯片在两次测试中的测试结果。对于这两次测试你想决定是否芯片要被接受或抛弃。为了帮助你做出艰难的决定你拥有过去芯片的测试数据集从其中你可以构建一个逻辑回归模型。 和第一部分很像从数据可视化开始吧 #读取文件ex2data2.txt的数据 pathex2data2.txt data2pd.read_csv(path,headerNone,names[Test1,Test2,Accepted]) data2.head()Test1Test2Accepted00.0512670.6995611-0.0927420.6849412-0.2137100.6922513-0.3750000.5021914-0.5132500.465641 #可视化数据 positive_indexdata2[Accepted]1 negative_indexdata2[Accepted]0 plt.scatter(data2[positive_index][Test1],data2[positive_index][Test2],colorr,marker^) plt.scatter(data2[negative_index][Test1],data2[negative_index][Test2],colorb,markero) plt.legend([Accpted,Not accepted]) plt.show()X2data2.iloc[:,:2] y2data2.iloc[:,2] X2.insert(0,ones,1) X2.shape,y2.shape((118, 3), (118,))X2X2.values y2y2.values2.2 假设函数与前h相同 2.3 代价函数与前相同 2.4 梯度下降算法与前相同 iter_num,alpha600000,0.0005 w,cost_lstgrandient(X2,y2,iter_num,alpha)#绘制误差曲线 plt.plot(range(iter_num),cost_lst,b-o)[matplotlib.lines.Line2D at 0x1422d45e970]#看看准确率有多少 y_pred[1 if item0.5 else 0 for item in sigmoid(X2w).ravel()] y_prednp.array(y_pred) y_pred.shape(118,)y2.shape(118,)np.sum(y_predy2)65np.sum(y_predy2)/y2.shape[0]0.5508474576271186y_pred[1 if item0.5 else 0 for item in sigmoid(X2w).ravel()] y_prednp.array(y_pred) np.sum(y_predy2)/y2.shape[0]0.55084745762711862.5 欠拟合的了模型过于简单增加一些多项式特征 pathex2data2.txt data2pd.read_csv(path,headerNone,names[Test1,Test2,Accepted]) data2.head()Test1Test2Accepted00.0512670.6995611-0.0927420.6849412-0.2137100.6922513-0.3750000.5021914-0.5132500.465641 #为数据框增加多列多项式特征 def poly_feature(data2,degree):x1data2[Test1]x2data2[Test2]items[]for i in range(degree1):for j in range(degree-i1):data2[Fstr(i)str(j)]np.power(x1,i)*np.power(x2,j)items.append((x1**{})*(x2**{}).format(i,j))data2data2.drop([Test1,Test2],axis1)return data2,items data2,itemspoly_feature(data2,4)data2.shape(118, 16)data2.head(5)AcceptedF00F01F02F03F04F10F11F12F13F20F21F22F30F31F40011.00.699560.4893840.3423540.2394970.0512670.0358640.0250890.0175510.0026280.0018390.0012860.0001350.0000940.000007111.00.684940.4691430.3213350.220095-0.092742-0.063523-0.043509-0.0298010.0086010.0058910.004035-0.000798-0.0005460.000074211.00.692250.4792100.3317330.229642-0.213710-0.147941-0.102412-0.0708950.0456720.0316160.021886-0.009761-0.0067570.002086311.00.502190.2521950.1266500.063602-0.375000-0.188321-0.094573-0.0474940.1406250.0706200.035465-0.052734-0.0264830.019775411.00.465640.2168210.1009600.047011-0.513250-0.238990-0.111283-0.0518180.2634260.1226610.057116-0.135203-0.0629560.069393 X2data2.iloc[:,1:data2.shape[1]-1] y2data2.iloc[:,0] X2.shape,y.shape((118, 14), (100,))X2F00F01F02F03F04F10F11F12F13F20F21F22F30F3101.00.6995600.4893840.3423542.394969e-010.0512670.0358640.0250890.0175510.0026280.0018390.0012861.347453e-049.426244e-0511.00.6849400.4691430.3213352.200950e-01-0.092742-0.063523-0.043509-0.0298010.0086010.0058910.004035-7.976812e-04-5.463638e-0421.00.6922500.4792100.3317332.296423e-01-0.213710-0.147941-0.102412-0.0708950.0456720.0316160.021886-9.760555e-03-6.756745e-0331.00.5021900.2521950.1266506.360222e-02-0.375000-0.188321-0.094573-0.0474940.1406250.0706200.035465-5.273438e-02-2.648268e-0241.00.4656400.2168210.1009604.701118e-02-0.513250-0.238990-0.111283-0.0518180.2634260.1226610.057116-1.352032e-01-6.295600e-02.............................................1131.00.5387400.2902410.1563648.423971e-02-0.720620-0.388227-0.209153-0.1126790.5192930.2797640.150720-3.742131e-01-2.016035e-011141.00.4948800.2449060.1211995.997905e-02-0.593890-0.293904-0.145447-0.0719790.3527050.1745470.086380-2.094682e-01-1.036616e-011151.00.9992700.9985410.9978129.970832e-01-0.484450-0.484096-0.483743-0.4833900.2346920.2345200.234349-1.136964e-01-1.136134e-011161.00.9992700.9985410.9978129.970832e-01-0.006336-0.006332-0.006327-0.0063230.0000400.0000400.000040-2.544062e-07-2.542205e-071171.0-0.0306120.000937-0.0000298.781462e-070.632650-0.0193670.000593-0.0000180.400246-0.0122520.0003752.532156e-01-7.751437e-03 118 rows × 14 columns y20 1 1 1 2 1 3 1 4 1.. 113 0 114 0 115 0 116 0 117 0 Name: Accepted, Length: 118, dtype: int64X2X2.values y2y2.valuesX2.shape,y2.shape((118, 14), (118,))#虽然加了多项式特征但是其他地方不需要改变 iter_num,alpha600000,0.001 w,cost_lstgrandient(X2,y2,iter_num,alpha) w,cost_lst(array([[ 3.03503577],[ 3.20158942],[-4.0495866 ],[-1.04983379],[-3.95636068],[ 2.0490215 ],[-3.40302089],[-0.79821365],[-1.23393575],[-7.32541507],[-1.41115593],[-1.80717912],[-0.54355034],[ 0.11775491]]),[0.6931399371004173,0.6931326952275558,0.6931254549404754,0.6931182162382921,0.693110979120122,0.6931037435850823,0.69309650963229,0.6930892772608634,0.6930820464699207,0.6930748172585808,0.6930675896259637,0.6930603635711893,0.6930531390933783,0.693045916191652,0.6930386948651323,0.6930314751129414,0.6930242569342021,0.6930170403280382,0.6930098252935735,0.6930026118299326,0.6929953999362406,0.6929881896116231,0.6929809808552065,0.6929737736661173,0.6929665680434831,0.6929593639864312,0.6929521614940908,0.6929449605655903,0.6929377612000593,0.6929305633966278,0.6929233671544265,0.6929161724725863,0.6929089793502394,0.6929017877865175,0.6928945977805535,0.6928874093314809,0.6928802224384333,0.6928730371005455,0.6928658533169517,0.6928586710867882,0.6928514904091909,0.6928443112832959,0.6928371337082408,0.6928299576831629,0.6928227832072007,0.6928156102794925,0.692808438899178,0.6928012690653973,0.6927941007772903,0.6927869340339977,0.6927797688346614,0.6927726051784232,0.6927654430644256,0.6927582824918116,0.6927511234597252,0.6927439659673101,0.6927368100137112,0.6927296555980735,0.6927225027195429,0.6927153513772657,0.6927082015703889,0.6927010532980594,0.6926939065594254,0.6926867613536353,0.6926796176798382,0.6926724755371833,0.6926653349248207,0.692658195841901,0.6926510582875753,0.6926439222609956,0.6926367877613135,0.6926296547876825,0.6926225233392544,0.6926153934151844,0.6926082650146258,0.6926011381367343,0.6925940127806647,0.6925868889455729,0.6925797666306154,0.6925726458349493,0.692565526557732,0.6925584087981212,0.6925512925552758,0.6925441778283548,0.6925370646165178,0.6925299529189249,0.6925228427347367,0.6925157340631142,0.6925086269032195,0.6925015212542147,0.6924944171152624,0.6924873144855257,0.692480213364169,0.6924731137503559,0.692466015643252,0.6924589190420221,0.6924518239458325,0.6924447303538497,0.6924376382652399,0.6924305476791713,0.6924234585948119,0.6924163710113299,0.6924092849278943,0.6924022003436747,0.6923951172578418,0.6923880356695654,0.692380955578017,0.6923738769823684,0.6923667998817915,0.6923597242754587,0.6923526501625441,0.6923455775422206,0.6923385064136628,0.6923314367760456,0.6923243686285434,0.6923173019703337,0.6923102368005914,0.6923031731184935,0.6922961109232177,0.6922890502139424,0.6922819909898448,0.6922749332501046,0.692267876993901,0.6922608222204141,0.692253768928824,0.6922467171183119,0.6922396667880594,0.6922326179372482,0.692225570565061,0.6922185246706808,0.6922114802532913,0.6922044373120759,0.69219739584622,0.692190355854908,0.692183317337326,0.6921762802926597,0.6921692447200962,0.6921622106188222,0.6921551779880252,0.6921481468268937,0.6921411171346162,0.6921340889103819,0.6921270621533807,0.6921200368628022,0.6921130130378376,0.6921059906776778,0.6920989697815146,0.6920919503485404,0.6920849323779475,0.6920779158689296,0.6920709008206801,0.6920638872323933,0.6920568751032641,0.6920498644324875,0.6920428552192593,0.692035847462776,0.6920288411622341,0.6920218363168312,0.6920148329257646,0.6920078309882332,0.692000830503435,0.6919938314705699,0.6919868338888373,0.6919798377574379,0.6919728430755722,0.6919658498424414,0.6919588580572479,0.6919518677191929,0.6919448788274806,0.6919378913813131,0.6919309053798947,0.6919239208224298,0.691916937708123,0.6919099560361796,0.6919029758058055,0.691895997016207,0.6918890196665908,0.6918820437561641,0.6918750692841349,0.6918680962497116,0.6918611246521027,0.6918541544905173,0.691847185764166,0.6918402184722583,0.6918332526140052,0.6918262881886181,0.6918193251953085,0.691812363633289,0.691805403501772,0.691798444799971,0.6917914875270996,0.6917845316823721,0.6917775772650034,0.6917706242742084,0.6917636727092031,0.6917567225692034,0.6917497738534262,0.6917428265610885,0.6917358806914085,0.691728936243604,0.6917219932168934,0.6917150516104965,0.6917081114236324,0.6917011726555214,0.6916942353053842,0.691687299372442,0.6916803648559162,0.691673431755029,0.6916665000690029,0.691659569797061,0.6916526409384272,0.691645713492325,0.6916387874579791,0.6916318628346149,0.6916249396214572,0.6916180178177327,0.6916110974226677,0.6916041784354889,0.6915972608554238,0.6915903446817003,0.6915834299135475,0.6915765165501937,0.691569604590868,0.6915626940348011,0.6915557848812225,0.6915488771293637,0.6915419707784556,0.6915350658277303,0.69152816227642,0.691521260123757,0.6915143593689757,0.6915074600113087,0.6915005620499908,0.6914936654842565,0.6914867703133412,0.6914798765364804,0.6914729841529099,0.691466093161867,0.6914592035625885,0.6914523153543117,0.6914454285362747,0.6914385431077166,0.6914316590678757,0.6914247764159921,0.6914178951513054,0.6914110152730563,0.6914041367804855,0.6913972596728342,0.6913903839493448,0.6913835096092594,0.6913766366518207,0.6913697650762726,0.6913628948818578,0.6913560260678212,0.6913491586334077,0.6913422925778623,0.6913354279004306,0.6913285646003587,0.6913217026768933,0.6913148421292818,0.6913079829567716,0.6913011251586102,0.691294268734047,0.6912874136823305,0.6912805600027101,0.6912737076944359,0.6912668567567581,0.6912600071889275,0.691253158990196,0.6912463121598151,0.691239466697037,0.6912326226011144,0.6912257798713006,0.6912189385068493,0.6912120985070148,0.6912052598710514,0.6911984225982147,0.6911915866877595,0.6911847521389427,0.69117791895102,0.6911710871232487,0.6911642566548867,0.6911574275451913,0.6911505997934211,0.6911437733988343,0.6911369483606911,0.6911301246782512,0.6911233023507742,0.6911164813775215,0.6911096617577531,0.691102843490732,0.6910960265757193,0.6910892110119781,0.6910823967987713,0.6910755839353621,0.6910687724210147,0.6910619622549933,0.6910551534365628,0.6910483459649887,0.6910415398395364,0.6910347350594729,0.6910279316240643,0.6910211295325772,0.6910143287842805,0.6910075293784415,0.6910007313143287,0.6909939345912114,0.6909871392083592,0.6909803451650415,0.6909735524605287,0.6909667610940924,0.6909599710650032,0.6909531823725328,0.6909463950159536,0.6909396089945385,0.6909328243075601,0.6909260409542926,0.6909192589340094,0.6909124782459855,0.6909056988894955,0.690898920863815,0.6908921441682196,0.6908853688019859,0.6908785947643907,0.6908718220547111,0.6908650506722244,0.6908582806162092,0.6908515118859441,0.6908447444807079,0.6908379783997801,0.6908312136424405,0.6908244502079699,0.6908176880956487,0.6908109273047588,0.6908041678345811,0.6907974096843985,0.6907906528534933,0.6907838973411485,0.690777143146648,0.6907703902692756,0.6907636387083155,0.6907568884630527,0.690750139532773,0.690743391916762,0.6907366456143056,0.6907299006246905,0.6907231569472044,0.6907164145811341,0.6907096735257682,0.690702933780395,0.6906961953443035,0.6906894582167828,0.690682722397123,0.6906759878846143,0.6906692546785472,0.6906625227782132,0.6906557921829036,0.6906490628919102,0.6906423349045264,0.6906356082200443,0.6906288828377575,0.6906221587569599,0.6906154359769455,0.6906087144970098,0.6906019943164466,0.6905952754345525,0.6905885578506235,0.6905818415639554,0.6905751265738461,0.690568412879592,0.6905617004804914,0.6905549893758427,0.6905482795649438,0.6905415710470946,0.6905348638215943,0.6905281578877431,0.6905214532448414,0.6905147498921895,0.6905080478290895,0.690501347054843,0.6904946475687516,0.6904879493701188,0.6904812524582472,0.6904745568324402,0.6904678624920019,0.6904611694362365,0.6904544776644493,0.6904477871759448,0.6904410979700292,0.6904344100460088,0.6904277234031898,0.6904210380408787,0.6904143539583844,0.6904076711550134,0.6904009896300746,0.6903943093828763,0.6903876304127281,0.6903809527189395,0.6903742763008206,0.6903676011576815,0.6903609272888331,0.6903542546935871,0.6903475833712557,0.69034091332115,0.6903342445425832,0.6903275770348686,0.6903209107973187,0.6903142458292487,0.6903075821299722,0.6903009196988041,0.6902942585350598,0.6902875986380544,0.6902809400071047,0.6902742826415266,0.6902676265406373,0.6902609717037543,0.6902543181301951,0.6902476658192781,0.6902410147703216,0.6902343649826451,0.6902277164555679,0.6902210691884098,0.6902144231804913,0.6902077784311333,0.690201134939657,0.6901944927053835,0.6901878517276353,0.6901812120057349,0.6901745735390051,0.6901679363267692,0.6901613003683511,0.6901546656630752,0.6901480322102651,0.6901414000092467,0.6901347690593452,0.6901281393598866,0.690121510910197,0.6901148837096033,0.6901082577574326,0.6901016330530122,0.6900950095956704,0.6900883873847353,0.6900817664195361,0.6900751466994021,0.6900685282236624,0.6900619109916476,0.6900552950026879,0.6900486802561143,0.6900420667512582,0.6900354544874515,0.6900288434640263,0.690022233680315,0.6900156251356507,0.6900090178293673,0.6900024117607981,0.6899958069292774,0.6899892033341402,0.6899826009747214,0.6899759998503566,0.6899693999603816,0.6899628013041332,0.6899562038809481,0.6899496076901628,0.6899430127311155,0.6899364190031444,0.6899298265055872,0.6899232352377836,0.6899166451990724,0.6899100563887932,0.6899034688062867,0.6898968824508926,0.6898902973219526,0.6898837134188075,0.6898771307407991,0.6898705492872698,0.6898639690575618,0.6898573900510188,0.6898508122669835,0.6898442357048,0.6898376603638127,0.689831086243366,0.6898245133428047,0.6898179416614751,0.689811371198722,0.6898048019538924,0.689798233926333,0.6897916671153906,0.6897851015204128,0.6897785371407474,0.6897719739757432,0.6897654120247485,0.6897588512871126,0.6897522917621844,0.6897457334493153,0.6897391763478544,0.689732620457153,0.6897260657765623,0.6897195123054336,0.6897129600431194,0.6897064089889716,0.6896998591423432,0.6896933105025878,0.6896867630690583,0.6896802168411088,0.6896736718180946,0.6896671279993697,0.6896605853842896,0.6896540439722101,0.6896475037624867,0.6896409647544766,0.6896344269475361,0.6896278903410226,0.689621354934294,0.6896148207267083,0.6896082877176235,0.6896017559063989,0.6895952252923941,0.689588695874968,0.6895821676534813,0.6895756406272939,0.6895691147957672,0.6895625901582623,0.6895560667141409,0.6895495444627653,0.6895430234034974,0.6895365035357004,0.6895299848587378,0.6895234673719729,0.6895169510747703,0.6895104359664939,0.6895039220465085,0.6894974093141799,0.6894908977688735,0.6894843874099555,0.6894778782367924,0.6894713702487508,0.6894648634451982,0.6894583578255021,0.6894518533890304,0.6894453501351522,0.6894388480632355,0.6894323471726499,0.6894258474627657,0.6894193489329519,0.6894128515825795,0.6894063554110188,0.6893998604176417,0.6893933666018192,0.6893868739629238,0.6893803825003278,0.6893738922134036,0.6893674031015249,0.689360915164065,0.6893544284003981,0.6893479428098981,0.6893414583919399,0.6893349751458988,0.6893284930711506,0.6893220121670708,0.6893155324330359,0.6893090538684223,0.6893025764726077,0.6892961002449691,0.6892896251848848,0.6892831512917327,0.6892766785648914,0.68927020700374,0.6892637366076584,0.6892572673760258,0.689250799308223,0.6892443324036301,0.6892378666616283,0.689231402081599,0.6892249386629243,0.6892184764049858,0.6892120153071661,0.6892055553688485,0.689199096589416,0.6891926389682527,0.689186182504742,0.6891797271982693,0.6891732730482184,0.6891668200539756,0.6891603682149255,0.6891539175304552,0.6891474679999502,0.6891410196227977,0.6891345723983848,0.6891281263260991,0.6891216814053285,0.6891152376354615,0.6891087950158865,0.6891023535459927,0.6890959132251698,0.6890894740528071,0.6890830360282953,0.689076599151025,0.6890701634203871,0.6890637288357729,0.6890572953965745,0.6890508631021836,0.6890444319519929,0.6890380019453953,0.6890315730817844,0.6890251453605535,0.6890187187810966,0.689012293342808,0.6890058690450832,0.688999445887317,0.6889930238689047,0.6889866029892425,0.6889801832477265,0.6889737646437539,0.6889673471767213,0.6889609308460263,0.6889545156510667,0.6889481015912406,0.688941688665947,0.6889352768745843,0.6889288662165526,0.6889224566912505,0.6889160482980794,0.6889096410364388,0.6889032349057299,0.6888968299053541,0.6888904260347121,0.688884023293207,0.6888776216802407,0.6888712211952157,0.6888648218375353,0.688858423606603,0.6888520265018226,0.6888456305225984,0.6888392356683349,0.6888328419384366,0.6888264493323096,0.6888200578493595,0.6888136674889918,0.6888072782506132,0.6888008901336309,0.6887945031374517,0.6887881172614835,0.6887817325051336,0.6887753488678109,0.6887689663489238,0.6887625849478818,0.6887562046640934,0.6887498254969691,0.6887434474459192,0.6887370705103535,0.6887306946896832,0.6887243199833197,0.6887179463906749,0.6887115739111601,0.6887052025441883,0.688698832289172,0.6886924631455241,0.6886860951126584,0.6886797281899885,0.6886733623769289,0.6886669976728934,0.688660634077298,0.6886542715895576,0.6886479102090873,0.6886415499353039,0.6886351907676235,0.6886288327054628,0.688622475748239,0.6886161198953701,0.6886097651462728,0.6886034115003662,0.6885970589570687,0.6885907075157992,0.6885843571759768,0.688578007937022,0.688571659798354,0.6885653127593935,0.6885589668195611,0.688552621978278,0.6885462782349664,0.6885399355890471,0.6885335940399426,0.688527253587076,0.6885209142298696,0.6885145759677471,0.6885082388001322,0.6885019027264487,0.688495567746121,0.6884892338585739,0.6884829010632325,0.6884765693595224,0.6884702387468692,0.6884639092246994,0.688457580792439,0.6884512534495155,0.688444927195356,0.6884386020293876,0.688432277951039,0.6884259549597384,0.6884196330549139,0.6884133122359953,0.6884069925024113,0.6884006738535923,0.6883943562889684,0.6883880398079698,0.6883817244100272,0.6883754100945724,0.6883690968610363,0.6883627847088507,0.6883564736374485,0.6883501636462622,0.6883438547347244,0.6883375469022686,0.6883312401483285,0.6883249344723381,0.6883186298737317,0.6883123263519442,0.6883060239064109,0.6882997225365669,0.688293422241848,0.6882871230216905,0.688280824875531,0.688274527802806,0.6882682318029532,0.6882619368754096,0.6882556430196136,0.6882493502350031,0.6882430585210174,0.6882367678770945,0.6882304783026743,0.6882241897971964,0.6882179023601008,0.688211615990828,0.6882053306888185,0.6881990464535135,0.6881927632843541,0.6881864811807826,0.688180200142241,0.6881739201681716,0.6881676412580173,0.688161363411221,0.6881550866272266,0.688148810905478,0.6881425362454192,0.6881362626464946,0.6881299901081493,0.6881237186298288,0.6881174482109782,0.688111178851044,0.6881049105494719,0.6880986433057091,0.6880923771192019,0.6880861119893985,0.6880798479157462,0.6880735848976928,0.6880673229346868,0.6880610620261772,0.6880548021716124,0.6880485433704425,0.6880422856221169,0.688036028926086,0.6880297732817994,0.688023518688709,0.6880172651462653,0.6880110126539196,0.6880047612111242,0.6879985108173311,0.6879922614719927,0.6879860131745617,0.6879797659244915,0.6879735197212354,0.6879672745642478,0.6879610304529822,0.6879547873868935,0.6879485453654369,0.6879423043880668,0.6879360644542397,0.6879298255634108,0.6879235877150365,0.687917350908574,0.6879111151434792,0.68790488041921,0.6878986467352243,0.6878924140909791,0.6878861824859337,0.6878799519195458,0.6878737223912752,0.6878674939005806,0.687861266446922,0.687855040029759,0.6878488146485524,0.6878425903027628,0.6878363669918508,0.6878301447152777,0.6878239234725055,0.6878177032629961,0.6878114840862118,0.6878052659416156,0.6877990488286697,0.6877928327468382,0.6877866176955842,0.6877804036743725,0.6877741906826668,0.6877679787199319,0.6877617677856327,0.6877555578792349,0.6877493490002041,0.687743141148006,0.6877369343221074,0.6877307285219747,0.687724523747075,0.6877183199968756,0.6877121172708444,0.6877059155684492,0.6876997148891582,0.6876935152324404,0.6876873165977645,0.6876811189846005,0.6876749223924173,0.6876687268206851,0.6876625322688749,0.6876563387364565,0.6876501462229011,0.6876439547276804,0.6876377642502658,0.6876315747901297,0.6876253863467437,0.6876191989195807,0.6876130125081141,0.6876068271118165,0.6876006427301624,0.6875944593626252,0.6875882770086794,0.6875820956677994,0.6875759153394605,0.6875697360231376,0.6875635577183067,0.6875573804244435,0.6875512041410243,0.6875450288675257,0.6875388546034246,0.6875326813481982,0.6875265091013244,0.6875203378622806,0.6875141676305453,0.6875079984055974,0.6875018301869149,0.6874956629739777,0.6874894967662654,0.687483331563257,0.6874771673644338,0.6874710041692756,0.6874648419772635,0.6874586807878786,0.6874525206006021,0.6874463614149161,0.6874402032303029,0.6874340460462444,0.6874278898622237,0.6874217346777238,0.6874155804922284,0.6874094273052211,0.6874032751161857,0.687397123924607,0.6873909737299688,0.6873848245317573,0.6873786763294574,0.6873725291225545,0.6873663829105352,0.6873602376928849,0.687354093469091,0.6873479502386403,0.6873418080010198,0.6873356667557176,0.6873295265022208,0.6873233872400182,0.6873172489685984,0.6873111116874501,0.6873049753960627,0.6872988400939255,0.6872927057805283,0.6872865724553615,0.6872804401179151,0.68727430876768,0.6872681784041478,0.6872620490268097,0.687255920635157,0.6872497932286825,0.6872436668068779,0.6872375413692363,0.68723141691525,0.6872252934444134,0.6872191709562195,0.6872130494501623,0.6872069289257362,0.6872008093824358,0.6871946908197555,0.6871885732371911,0.6871824566342382,0.6871763410103922,0.6871702263651496,0.6871641126980065,0.6871580000084602,0.6871518882960073,0.6871457775601456,0.6871396678003725,0.6871335590161864,0.6871274512070853,0.6871213443725684,0.6871152385121341,0.6871091336252817,0.6871030297115114,0.6870969267703225,0.6870908248012159,0.6870847238036913,0.68707862377725,0.6870725247213932,0.6870664266356225,0.6870603295194394,0.6870542333723462,0.6870481381938451,0.6870420439834392,0.6870359507406308,0.687029858464924,0.6870237671558223,0.6870176768128294,0.6870115874354497,0.6870054990231881,0.6869994115755486,0.6869933250920375,0.6869872395721597,0.6869811550154208,0.6869750714213273,0.6869689887893855,0.6869629071191022,0.6869568264099849,0.6869507466615399,0.6869446678732757,0.6869385900446999,0.6869325131753212,0.6869264372646477,0.6869203623121884,0.6869142883174523,0.6869082152799498,0.6869021431991895,0.6868960720746824,0.6868900019059384,0.6868839326924686,0.6868778644337838,0.6868717971293953,0.686865730778815,0.6868596653815545,0.6868536009371263,0.6868475374450429,0.6868414749048171,0.6868354133159618,0.6868293526779911,0.6868232929904182,0.6868172342527574,0.6868111764645234,0.68680511962523,0.6867990637343928,0.6867930087915272,0.6867869547961485,0.6867809017477724,0.6867748496459155,0.686768798490094,0.6867627482798252,0.6867566990146253,0.6867506506940125,0.6867446033175041,0.686738556884618,0.6867325113948729,0.686726466847787,0.6867204232428794,0.6867143805796693,0.6867083388576762,0.6867022980764199,0.6866962582354202,0.6866902193341977,0.6866841813722733,0.6866781443491677,0.6866721082644022,0.6866660731174986,0.6866600389079782,0.686654005635364,0.6866479732991783,0.6866419418989436,0.6866359114341828,0.6866298819044195,0.6866238533091775,0.686617825647981,0.6866117989203535,0.6866057731258198,0.6865997482639055,0.686593724334135,0.6865877013360339,0.686581679269128,0.6865756581329433,0.686569637927006,...])w.shape(14, 1)cost_lst[iter_num-1]0.365635134439536#绘制误差曲线 plt.plot(range(iter_num),cost_lst,b-o)[matplotlib.lines.Line2D at 0x1422d44cdc0]这时要重新绘图了 items X2array([[ 1.00000000e00, 6.99560000e-01, 4.89384194e-01, ...,1.28625106e-03, 1.34745327e-04, 9.42624411e-05],[ 1.00000000e00, 6.84940000e-01, 4.69142804e-01, ...,4.03513411e-03, -7.97681228e-04, -5.46363780e-04],[ 1.00000000e00, 6.92250000e-01, 4.79210063e-01, ...,2.18864648e-02, -9.76055545e-03, -6.75674451e-03],...,[ 1.00000000e00, 9.99270000e-01, 9.98540533e-01, ...,2.34349278e-01, -1.13696444e-01, -1.13613445e-01],[ 1.00000000e00, 9.99270000e-01, 9.98540533e-01, ...,4.00913674e-05, -2.54406238e-07, -2.54220521e-07],[ 1.00000000e00, -3.06120000e-02, 9.37094544e-04, ...,3.75068364e-04, 2.53215646e-01, -7.75143736e-03]])X2.shape,w.shape((118, 14), (14, 1))y_pred[1 if item0.5 else 0 for item in sigmoid(X2w).ravel()] y_prednp.array(y_pred) np.sum(y_predy2)/y2.shape[0]0.83050847457627122.6 定义正则化项的代价函数 regularized cost正则化代价函数 J ( w ) 1 m ∑ i 1 m [ − y ( i ) log ⁡ ( h ( x ( i ) ) ) − ( 1 − y ( i ) ) log ⁡ ( 1 − h ( x ( i ) ) ) ] λ 2 m ∑ j 1 n w j 2 J\left( w \right)\frac{1}{m}\sum\limits_{i1}^{m}{[-{{y}^{(i)}}\log \left( {{h}}\left( {{x}^{(i)}} \right) \right)-\left( 1-{{y}^{(i)}} \right)\log \left( 1-{{h}}\left( {{x}^{(i)}} \right) \right)]}\frac{\lambda }{2m}\sum\limits_{j1}^{n}{w _{j}^{2}} J(w)m1​i1∑m​[−y(i)log(h(x(i)))−(1−y(i))log(1−h(x(i)))]2mλ​j1∑n​wj2​ w[:,0]array([ 3.03503577, 3.20158942, -4.0495866 , -1.04983379, -3.95636068,2.0490215 , -3.40302089, -0.79821365, -1.23393575, -7.32541507,-1.41115593, -1.80717912, -0.54355034, 0.11775491])#代价函数构造 def cost_reg(X,w,y,lambd):#当X(m,n1),y(m,),w(n1,1)y_hatsigmoid(Xw)right1np.multiply(y.ravel(),np.log(y_hat).ravel())np.multiply((1-y).ravel(),np.log(1-y_hat).ravel())right2(lambd/(2*X.shape[0]))*np.sum(np.power(w[1:,0],2))cost-np.sum(right1)/X.shape[0]right2return costcost(X2,w,y2)0.365635134439536lambd2 cost_reg(X2,w,y2,lambd)1.38742603764935172.7 定义正则化的梯度下降算法 如果我们要使用梯度下降法令这个代价函数最小化因为我们未对 w 0 {{w }_{0}} w0​ 进行正则化所以梯度下降算法将分两种情形 KaTeX parse error: No such environment: align at position 7: \begin{̲a̲l̲i̲g̲n̲}̲ 重复\text{ }… 对上面的算法中 j1,2,…,n 时的更新式子进行调整可得 w j : w j ( 1 − a λ m ) − a 1 m ∑ i 1 m ( h w ( x ( i ) ) − y ( i ) ) x j ( i ) {{w }_{j}}:{{w }_{j}}(1-a\frac{\lambda }{m})-a\frac{1}{m}\sum\limits_{i1}^{m}{({{h}_{w }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}})x_{j}^{(i)}} wj​:wj​(1−amλ​)−am1​i1∑m​(hw​(x(i))−y(i))xj(i)​ def grandient_reg(X,w,y,iter_num,alpha,lambd):yy.reshape((X.shape[0],1))wnp.zeros((X.shape[1],1))cost_lst[] for i in range(iter_num):y_predh(X,w)-ytempnp.zeros((X.shape[1],1))for j in range(0,X.shape[1]):if j0:right_0np.multiply(y_pred.ravel(),X[:,0])gradient_01/(X.shape[0])*(np.sum(right_0))temp[j,0]w[j,0]-alpha*(gradient_0)else:rightnp.multiply(y_pred.ravel(),X[:,j])reg(lambd/X.shape[0])*w[j,0]gradient1/(X.shape[0])*(np.sum(right))temp[j,0]w[j,0]-alpha*(gradientreg) wtempcost_lst.append(cost_reg(X,w,y,lambd))return w,cost_lstiter_num,alpha,lambd600000,0.001,1 w2,cost_lstgrandient_reg(X2,w,y2,iter_num,alpha,lambd)plt.plot(range(iter_num),cost_lst)[matplotlib.lines.Line2D at 0x1422dddef40]请注意等式中的reg 项。还注意到另外的一个“学习率”参数。这是一种超参数用来控制正则化项。现在我们需要添加正则化梯度函数 就像在第一部分中做的一样初始化变量。 实验1 计算基于正则化得到的准确率 y_pred[1 if item0.5 else 0 for item in sigmoid(X2w).ravel()] y_prednp.array(y_pred) np.sum(y_predy2)/y2.shape[0]0.8305084745762712现在让我们尝试调用新的默认为0的 w w w的正则化函数以确保计算工作正常。最后我们可以使用第1部分中的预测函数来查看我们的方案在训练数据上的准确度。 2.8 试试sklearn from sklearn import linear_model#调用sklearn的线性回归包 model linear_model.LogisticRegression(penaltyl2, C1.0) model.fit(X2, y2.ravel())LogisticRegression()model.score(X2, y2)0.8389830508474576参考 [1] Andrew Ng. Machine Learning[EB/OL]. StanfordUniversity,2014.https://www.coursera.org/course/ml [2] 李航. 统计学习方法[M]. 北京: 清华大学出版社,2019. import sklearn.datasets as datasets from sklearn.linear_model import LogisticRegression import matplotlib.pyplot as plt3.1 准备数据 X, y datasets.make_blobs(n_samples200, n_features2, centers2, random_state0)X.shape, y.shape ((200, 2), (200,))Xarray([[ 2.8219307 , 1.25395648],[ 1.65581849, 1.26771955],[ 3.12377692, 0.44427786],[ 1.4178305 , 0.50039185],[ 2.50904929, 5.7731461 ],[ 0.30380963, 3.94423417],[ 1.12031365, 5.75806083],[ 0.08848433, 2.32299086],[ 1.92238694, 0.59987278],[-0.65392827, 4.76656958],[ 1.45895348, 0.84509636],[ 0.51447051, 0.96092565],[ 1.35269561, 3.20438654],[-0.27652528, 5.08127768],[ 2.15299249, 1.48061734],[ 0.17286041, 3.61423755],[-0.20029671, -0.12484318],[ 3.52184624, 1.7502156 ],[ 2.5763324 , 0.32187569],[ 2.89689879, 0.64820508],[ 1.36742991, -0.31641374],[-0.33963733, 3.84220272],[ 2.07592967, 4.95905106],[ 0.206354 , 4.84303652],[ 2.89921211, 5.78430212],[ 0.340424 , 4.98022062],[ 1.78753398, -0.23034767],[ 1.18454506, 5.28042636],[ 1.61434489, 0.61730816],[-0.60390472, 1.50398318],[-0.19685333, 6.24740851],[ 0.72100905, -0.44905385],[ 2.96544643, 1.21488188],[ 1.06975678, -0.57417135],[ 0.90802847, 6.01713005],[-0.17119857, 3.86596728],[ 1.36321767, 2.43404071],[ 1.24190326, -0.56876067],[ 1.33263648, 5.0103605 ],[ 0.62835793, 4.4601363 ],[ 0.70826671, 5.10624372],[ 2.8285205 , -0.28621698],[ 1.57561171, 1.51802196],[ 0.94808785, 4.7321192 ],[ 1.0427873 , 4.60625923],[ 2.19722068, 0.57833524],[-0.29421492, 5.27318404],[ 0.02458305, 2.96215652],[ 2.16429987, 4.62072994],[ 4.31457647, 0.85540651],[ 0.86640826, 0.39084731],[ 1.5528609 , 4.09548857],[ 1.44193252, 2.76754364],[ 0.93698726, 3.13569383],[ 2.21177406, 1.1298447 ],[ 0.46546494, 3.12315514],[ 3.13950603, 5.64031528],[ 0.9867701 , 6.08965782],[ 1.74438135, 0.99506383],[ 0.89791226, 0.58537141],[ 2.74904067, 0.73809022],[ 4.01117983, 1.28775698],[-0.09448254, 5.35823905],[ 0.62227617, 2.92883603],[ 3.35941485, 5.24826681],[ 2.1047625 , 1.39150044],[ 1.01001416, 2.10880895],[ 2.63378902, 1.24731812],[ 2.15504965, 4.12386249],[ 0.28170222, 4.15415279],[ 4.35918422, -0.16235216],[ 0.4666179 , 3.86571303],[ 0.11898772, 1.08644226],[ 1.69057398, 1.05436752],[ 1.92156596, 1.97540747],[ 2.84159548, 0.43124456],[ 1.89760051, 3.15438716],[ 0.74874067, 2.55579434],[ 0.1631238 , 2.57750473],[ 1.45661358, -0.21823333],[ 1.14294357, 4.93881876],[ 2.03824711, 1.2768154 ],[-1.57671974, 4.95740592],[-0.73000011, 6.25456272],[ 1.37125662, 2.55721446],[ 2.84382904, 5.20983199],[-0.51498751, 4.74317903],[ 2.01309607, 0.61077647],[ 1.67038771, 0.99201525],[ 1.59167155, 1.37914513],[ 1.37861172, 3.61897724],[-0.02394527, 2.75901623],[ 0.11504439, 6.21385228],[ 2.11567076, 3.06896151],[ 1.91931782, 2.03455502],[ 2.03958541, 1.05859183],[ 1.84836385, 1.77784257],[ 0.52073758, 4.32126649],[ 1.0220286 , 4.11660348],[ 1.2911236 , -0.54012781],[ 0.34194798, 3.94104616],[ 2.5490093 , 0.78155972],[ 1.15369622, 3.90200639],[ 0.60708824, 4.06440815],[-0.63762777, 4.09104705],[ 1.28933778, 3.44969159],[-0.12811326, 4.35595241],[ 0.08080352, 4.69068983],[ 3.20759909, 1.97728225],[ 0.06344785, 5.42080362],[ 2.80245586, -0.2912813 ],[ 2.20656076, 5.50616718],[ 1.7373078 , 4.42546234],[ 1.70536064, 4.43277024],[ 0.47823763, 6.23331938],[ 2.6225578 , 0.67498856],[ 0.21219797, 0.41968966],[ 1.76343016, 0.13617145],[ 1.09932252, 0.55168188],[ 1.86461403, 0.50281415],[ 1.59034945, 5.225994 ],[ 2.48152625, 1.57457169],[ 0.58894326, 4.00148458],[ 1.35056725, 1.84092438],[ 0.3571617 , 1.28494414],[ 2.7216506 , 0.43694387],[ 1.92352205, 4.14877723],[ 2.0309414 , 0.15963275],[ 2.69858199, -0.67295975],[ 1.83310069, 3.65276173],[ 1.45795145, 0.65974193],[ 1.37227679, 3.21072582],[ 0.54111653, 6.15305106],[ 2.57915855, 0.98608575],[ 0.23151526, 3.47734879],[ 2.84382807, 3.32650945],[-0.24916544, 5.1481503 ],[ 1.40285894, 0.50671028],[ 2.74508569, 2.19950989],[ 3.70340245, 1.06189142],[ 1.42013331, 4.63746165],[ 0.47232912, 1.50804304],[ 1.8971289 , 4.62251498],[ 0.10547293, 3.72493766],[ 2.32978388, 0.00674858],[ 1.60150153, 2.70172967],[ 0.30193742, 4.33561789],[-0.31658683, 4.5708382 ],[ 2.34161121, 1.50650749],[ 1.94472686, 1.91783637],[ 1.40297392, 0.37647435],[ 0.06897171, 4.35573272],[ 1.74806063, 5.12729148],[ 1.49954674, 4.132241 ],[ 0.63120661, 0.40434378],[ 1.27450825, 5.63017322],[ 0.66471755, 4.35995267],[ 1.42717996, 0.41663654],[ 2.9871159 , 1.23762864],[ 1.33566313, 0.08467067],[ 0.92844171, 0.16698591],[ 2.46452227, 6.1996765 ],[ 2.85942078, 2.95602827],[ 2.69539905, -0.71929238],[ 1.70183577, -0.71881053],[ 1.11082127, 0.48761397],[ 0.23670708, 5.84680192],[ 1.1312175 , 4.68194985],[ 0.33265168, 2.08038418],[-0.07228289, 2.88376939],[ 1.74625455, -0.77834015],[ 1.93710348, 0.21748546],[ 3.41979937, 0.20821448],[ 1.10318217, 4.70577669],[ 2.33570923, -0.09545995],[ 1.64856484, 4.71124916],[ 1.92569089, 4.39133857],[ 0.57309313, 5.5262324 ],[ 3.54975207, -1.17232137],[ 2.45431387, -1.8749291 ],[ 0.89908509, 1.67886176],[ 1.84070628, 3.56162231],[ 1.99364112, 0.79035838],[ 2.102906 , 3.22385582],[ 0.87305123, 4.71438583],[ 0.5626511 , 3.55633252],[ 2.75372467, 0.90143455],[ 2.09389807, -0.75905144],[ 1.32967014, -0.4857003 ],[-0.05797276, 4.98538185],[ 1.51240605, 1.31371371],[ 0.87781755, 3.64030904],[ 0.29937694, 1.34859812],[ 2.33519212, 0.79951327],[ 2.91319145, 2.03876553],[ 2.74680627, 1.5924128 ],[ 2.47034915, 4.09862906],[ 3.2460247 , 2.84942165],[ 1.9263585 , 4.15243012],[-0.18887976, 5.20461381]])plt.scatter(X[:, 0], X[:, 1], cy)matplotlib.collections.PathCollection at 0x142327368e0实验2 完成3.2 调用逻辑回归模型完成分类 3.2 调用普通的逻辑回归模型来进行多分类(调用1.4的梯度下降算法) Xnp.insert(X,0,1,axis1) Xarray([[ 1. , 2.8219307 , 1.25395648],[ 1. , 1.65581849, 1.26771955],[ 1. , 3.12377692, 0.44427786],[ 1. , 1.4178305 , 0.50039185],[ 1. , 2.50904929, 5.7731461 ],[ 1. , 0.30380963, 3.94423417],[ 1. , 1.12031365, 5.75806083],[ 1. , 0.08848433, 2.32299086],[ 1. , 1.92238694, 0.59987278],[ 1. , -0.65392827, 4.76656958],[ 1. , 1.45895348, 0.84509636],[ 1. , 0.51447051, 0.96092565],[ 1. , 1.35269561, 3.20438654],[ 1. , -0.27652528, 5.08127768],[ 1. , 2.15299249, 1.48061734],[ 1. , 0.17286041, 3.61423755],[ 1. , -0.20029671, -0.12484318],[ 1. , 3.52184624, 1.7502156 ],[ 1. , 2.5763324 , 0.32187569],[ 1. , 2.89689879, 0.64820508],[ 1. , 1.36742991, -0.31641374],[ 1. , -0.33963733, 3.84220272],[ 1. , 2.07592967, 4.95905106],[ 1. , 0.206354 , 4.84303652],[ 1. , 2.89921211, 5.78430212],[ 1. , 0.340424 , 4.98022062],[ 1. , 1.78753398, -0.23034767],[ 1. , 1.18454506, 5.28042636],[ 1. , 1.61434489, 0.61730816],[ 1. , -0.60390472, 1.50398318],[ 1. , -0.19685333, 6.24740851],[ 1. , 0.72100905, -0.44905385],[ 1. , 2.96544643, 1.21488188],[ 1. , 1.06975678, -0.57417135],[ 1. , 0.90802847, 6.01713005],[ 1. , -0.17119857, 3.86596728],[ 1. , 1.36321767, 2.43404071],[ 1. , 1.24190326, -0.56876067],[ 1. , 1.33263648, 5.0103605 ],[ 1. , 0.62835793, 4.4601363 ],[ 1. , 0.70826671, 5.10624372],[ 1. , 2.8285205 , -0.28621698],[ 1. , 1.57561171, 1.51802196],[ 1. , 0.94808785, 4.7321192 ],[ 1. , 1.0427873 , 4.60625923],[ 1. , 2.19722068, 0.57833524],[ 1. , -0.29421492, 5.27318404],[ 1. , 0.02458305, 2.96215652],[ 1. , 2.16429987, 4.62072994],[ 1. , 4.31457647, 0.85540651],[ 1. , 0.86640826, 0.39084731],[ 1. , 1.5528609 , 4.09548857],[ 1. , 1.44193252, 2.76754364],[ 1. , 0.93698726, 3.13569383],[ 1. , 2.21177406, 1.1298447 ],[ 1. , 0.46546494, 3.12315514],[ 1. , 3.13950603, 5.64031528],[ 1. , 0.9867701 , 6.08965782],[ 1. , 1.74438135, 0.99506383],[ 1. , 0.89791226, 0.58537141],[ 1. , 2.74904067, 0.73809022],[ 1. , 4.01117983, 1.28775698],[ 1. , -0.09448254, 5.35823905],[ 1. , 0.62227617, 2.92883603],[ 1. , 3.35941485, 5.24826681],[ 1. , 2.1047625 , 1.39150044],[ 1. , 1.01001416, 2.10880895],[ 1. , 2.63378902, 1.24731812],[ 1. , 2.15504965, 4.12386249],[ 1. , 0.28170222, 4.15415279],[ 1. , 4.35918422, -0.16235216],[ 1. , 0.4666179 , 3.86571303],[ 1. , 0.11898772, 1.08644226],[ 1. , 1.69057398, 1.05436752],[ 1. , 1.92156596, 1.97540747],[ 1. , 2.84159548, 0.43124456],[ 1. , 1.89760051, 3.15438716],[ 1. , 0.74874067, 2.55579434],[ 1. , 0.1631238 , 2.57750473],[ 1. , 1.45661358, -0.21823333],[ 1. , 1.14294357, 4.93881876],[ 1. , 2.03824711, 1.2768154 ],[ 1. , -1.57671974, 4.95740592],[ 1. , -0.73000011, 6.25456272],[ 1. , 1.37125662, 2.55721446],[ 1. , 2.84382904, 5.20983199],[ 1. , -0.51498751, 4.74317903],[ 1. , 2.01309607, 0.61077647],[ 1. , 1.67038771, 0.99201525],[ 1. , 1.59167155, 1.37914513],[ 1. , 1.37861172, 3.61897724],[ 1. , -0.02394527, 2.75901623],[ 1. , 0.11504439, 6.21385228],[ 1. , 2.11567076, 3.06896151],[ 1. , 1.91931782, 2.03455502],[ 1. , 2.03958541, 1.05859183],[ 1. , 1.84836385, 1.77784257],[ 1. , 0.52073758, 4.32126649],[ 1. , 1.0220286 , 4.11660348],[ 1. , 1.2911236 , -0.54012781],[ 1. , 0.34194798, 3.94104616],[ 1. , 2.5490093 , 0.78155972],[ 1. , 1.15369622, 3.90200639],[ 1. , 0.60708824, 4.06440815],[ 1. , -0.63762777, 4.09104705],[ 1. , 1.28933778, 3.44969159],[ 1. , -0.12811326, 4.35595241],[ 1. , 0.08080352, 4.69068983],[ 1. , 3.20759909, 1.97728225],[ 1. , 0.06344785, 5.42080362],[ 1. , 2.80245586, -0.2912813 ],[ 1. , 2.20656076, 5.50616718],[ 1. , 1.7373078 , 4.42546234],[ 1. , 1.70536064, 4.43277024],[ 1. , 0.47823763, 6.23331938],[ 1. , 2.6225578 , 0.67498856],[ 1. , 0.21219797, 0.41968966],[ 1. , 1.76343016, 0.13617145],[ 1. , 1.09932252, 0.55168188],[ 1. , 1.86461403, 0.50281415],[ 1. , 1.59034945, 5.225994 ],[ 1. , 2.48152625, 1.57457169],[ 1. , 0.58894326, 4.00148458],[ 1. , 1.35056725, 1.84092438],[ 1. , 0.3571617 , 1.28494414],[ 1. , 2.7216506 , 0.43694387],[ 1. , 1.92352205, 4.14877723],[ 1. , 2.0309414 , 0.15963275],[ 1. , 2.69858199, -0.67295975],[ 1. , 1.83310069, 3.65276173],[ 1. , 1.45795145, 0.65974193],[ 1. , 1.37227679, 3.21072582],[ 1. , 0.54111653, 6.15305106],[ 1. , 2.57915855, 0.98608575],[ 1. , 0.23151526, 3.47734879],[ 1. , 2.84382807, 3.32650945],[ 1. , -0.24916544, 5.1481503 ],[ 1. , 1.40285894, 0.50671028],[ 1. , 2.74508569, 2.19950989],[ 1. , 3.70340245, 1.06189142],[ 1. , 1.42013331, 4.63746165],[ 1. , 0.47232912, 1.50804304],[ 1. , 1.8971289 , 4.62251498],[ 1. , 0.10547293, 3.72493766],[ 1. , 2.32978388, 0.00674858],[ 1. , 1.60150153, 2.70172967],[ 1. , 0.30193742, 4.33561789],[ 1. , -0.31658683, 4.5708382 ],[ 1. , 2.34161121, 1.50650749],[ 1. , 1.94472686, 1.91783637],[ 1. , 1.40297392, 0.37647435],[ 1. , 0.06897171, 4.35573272],[ 1. , 1.74806063, 5.12729148],[ 1. , 1.49954674, 4.132241 ],[ 1. , 0.63120661, 0.40434378],[ 1. , 1.27450825, 5.63017322],[ 1. , 0.66471755, 4.35995267],[ 1. , 1.42717996, 0.41663654],[ 1. , 2.9871159 , 1.23762864],[ 1. , 1.33566313, 0.08467067],[ 1. , 0.92844171, 0.16698591],[ 1. , 2.46452227, 6.1996765 ],[ 1. , 2.85942078, 2.95602827],[ 1. , 2.69539905, -0.71929238],[ 1. , 1.70183577, -0.71881053],[ 1. , 1.11082127, 0.48761397],[ 1. , 0.23670708, 5.84680192],[ 1. , 1.1312175 , 4.68194985],[ 1. , 0.33265168, 2.08038418],[ 1. , -0.07228289, 2.88376939],[ 1. , 1.74625455, -0.77834015],[ 1. , 1.93710348, 0.21748546],[ 1. , 3.41979937, 0.20821448],[ 1. , 1.10318217, 4.70577669],[ 1. , 2.33570923, -0.09545995],[ 1. , 1.64856484, 4.71124916],[ 1. , 1.92569089, 4.39133857],[ 1. , 0.57309313, 5.5262324 ],[ 1. , 3.54975207, -1.17232137],[ 1. , 2.45431387, -1.8749291 ],[ 1. , 0.89908509, 1.67886176],[ 1. , 1.84070628, 3.56162231],[ 1. , 1.99364112, 0.79035838],[ 1. , 2.102906 , 3.22385582],[ 1. , 0.87305123, 4.71438583],[ 1. , 0.5626511 , 3.55633252],[ 1. , 2.75372467, 0.90143455],[ 1. , 2.09389807, -0.75905144],[ 1. , 1.32967014, -0.4857003 ],[ 1. , -0.05797276, 4.98538185],[ 1. , 1.51240605, 1.31371371],[ 1. , 0.87781755, 3.64030904],[ 1. , 0.29937694, 1.34859812],[ 1. , 2.33519212, 0.79951327],[ 1. , 2.91319145, 2.03876553],[ 1. , 2.74680627, 1.5924128 ],[ 1. , 2.47034915, 4.09862906],[ 1. , 3.2460247 , 2.84942165],[ 1. , 1.9263585 , 4.15243012],[ 1. , -0.18887976, 5.20461381]])#调用梯度下降算法 iter_num,alpha600000,0.001 w,cost_lstgrandient(X,y,iter_num,alpha)#绘制误差曲线 plt.plot(range(iter_num),cost_lst,b-o)[matplotlib.lines.Line2D at 0x1423849dc70]X[y0,1]array([ 2.50904929, 0.30380963, 1.12031365, 0.08848433, -0.65392827,1.35269561, -0.27652528, 0.17286041, -0.33963733, 2.07592967,0.206354 , 2.89921211, 0.340424 , 1.18454506, -0.19685333,0.90802847, -0.17119857, 1.33263648, 0.62835793, 0.70826671,0.94808785, 1.0427873 , -0.29421492, 2.16429987, 1.5528609 ,1.44193252, 0.93698726, 0.46546494, 3.13950603, 0.9867701 ,-0.09448254, 0.62227617, 3.35941485, 2.15504965, 0.28170222,0.4666179 , 0.1631238 , 1.14294357, -1.57671974, -0.73000011,2.84382904, -0.51498751, 1.37861172, -0.02394527, 0.11504439,2.11567076, 0.52073758, 1.0220286 , 0.34194798, 1.15369622,0.60708824, -0.63762777, 1.28933778, -0.12811326, 0.08080352,0.06344785, 2.20656076, 1.7373078 , 1.70536064, 0.47823763,1.59034945, 0.58894326, 1.92352205, 1.83310069, 1.37227679,0.54111653, 0.23151526, 2.84382807, -0.24916544, 1.42013331,1.8971289 , 0.10547293, 1.60150153, 0.30193742, -0.31658683,0.06897171, 1.74806063, 1.49954674, 1.27450825, 0.66471755,2.46452227, 2.85942078, 0.23670708, 1.1312175 , 0.33265168,-0.07228289, 1.10318217, 1.64856484, 1.92569089, 0.57309313,1.84070628, 2.102906 , 0.87305123, 0.5626511 , -0.05797276,0.87781755, 2.47034915, 3.2460247 , 1.9263585 , -0.18887976])#绘制线性的决策边界 x_exmalnp.linspace(np.min(X[:,1]),np.max(X[:,1]),50) x2(-w[0,0]-w[1,0]*x_exmal)/(w[2,0]) plt.plot(x_exmal,x2,r-o) plt.scatter(X[y1,1],X[y1,2],colorb,markero) plt.scatter(X[y0,1],X[y0,2],colorc,marker^) plt.show()#计算准确率 y_pred[1 if item0.5 else 0 for item in sigmoid(Xw).ravel()] y_prednp.array(y_pred) np.sum(y_predy)/y.shape[0]0.97实验3 完成3.3 调用正则化的逻辑回归模型完成分类 3.3调用正则化的逻辑回归模型来进行多分类(调用2.7的梯度下降算法) y.shape,X.shape,w.shape((200,), (200, 3), (3, 1))#调用梯度下降算法 iter_num,alpha,lambd600000,0.001,1 w,cost_lstgrandient_reg(X,w,y,iter_num,alpha,lambd)#绘制误差曲线 plt.plot(range(iter_num),cost_lst,b-o)[matplotlib.lines.Line2D at 0x1423279f070]#绘制线性的决策边界 x_exmalnp.linspace(np.min(X[:,1]),np.max(X[:,1]),50) x2(-w[0,0]-w[1,0]*x_exmal)/(w[2,0]) plt.plot(x_exmal,x2,r-o) plt.scatter(X[y1,1],X[y1,2],colorb,markero) plt.scatter(X[y0,1],X[y0,2],colorc,marker^) plt.show()y.shape,X.shape,w.shape((200,), (200, 3), (3, 1))#计算准确率 y_pred[1 if item0.5 else 0 for item in sigmoid(Xw).ravel()] y_prednp.array(y_pred) np.sum(y_predy)/y.shape[0]0.97实验4 完成3.3 调用SKLEARN完成分类 3.4 调用SKLEARN from sklearn.linear_model import LogisticRegression clf LogisticRegression().fit(X, y) clf.score(X,y)0.97
http://www.w-s-a.com/news/660741/

相关文章:

  • 网站建设前的ER图ppt模板图片 背景
  • 做一个网站花多少钱网站导航营销步骤
  • 仙桃网站定制做房产网站能赚钱吗
  • 西安网站制作模板最新源码
  • 南京江宁网站建设大学高校网站建设栏目
  • 模板网站建设明细报价表做网站第一
  • 公司网站建设系统软件开发 上海
  • 怎么让公司建设网站固安县建设局网站
  • 360免费建站官网入口手机网站建设设计
  • 商城网站建站系统dw如何做网页
  • 网站建设的公司收费我有网站 怎么做淘宝推广的
  • 网站建设策划书事物选题手机兼职app
  • html5 微网站模版wordpress博客速度很慢
  • 怎么做五个页面网站网络推广如何收费
  • 上虞宇普电器网站建设江西建筑人才网
  • 在吗做网站商城一个网站需要服务器吗
  • 先做网站再备案吗中山微网站建设报价
  • 树莓派可以做网站的服务器吗网站建设与设计ppt
  • 网站访问速度分析网站怎么做让PC和手机自动识别
  • 网站建设要考西宁网站建设多少钱
  • 网站开发公司东莞网站推广计划书具体包含哪些基本内容?
  • 素材天下网站惠州网站建设行业
  • 网站做a视频在线观看网站天津建站
  • 自己做的网站怎么链接火车头采集一个网站可以做几级链接
  • 济南网站制作哪家专业做网站怎样投放广告
  • 辽宁网站推广短视频运营培训学费多少
  • 拼多多网站怎么做翻译 插件 wordpress
  • 做网站运营的职业生涯规划wordpress分类显示图片
  • 网站建设与制作总结沈阳百度广告
  • 网站管理系统 手机会员制网站搭建wordpress